低收入人口动态监测系统的现有案例
低收入人口动态监测系统的现有案例包括以下几个地方:
- 河南省:河南省政府办公厅发布的实施意见中提到,通过乡镇(街道)采集低收入人口相关数据信息,逐级上传至低收入人口动态监测信息平台,形成低收入人口数据库。监测措施包括线上线下相结合、各部门信息相结合、主动走访和报告发现相结合,及时发现家庭变化和需要救助的困难群众。
- 贵州省:贵州省将低保对象、特困人员、低保边缘家庭、防止返贫监测对象、刚性支出困难家庭等360余万低收入人口纳入数据库监测范围,并结合工作实际,将残疾人、近两年退出低保或特困对象、申请未通过对象、已脱贫人口等910余万潜在救助对象纳入监测范围,不断健全监测预警指标体系。
- 湖南省:湖南省民政厅通过建立低收入人口动态监测系统,实现对低收入人口的及时发现和救助。系统运用大数据和推荐算法等技术,从多个维度动态计算每户家庭的困难程度,为各民生保障部门提供信息查询和需求推送服务。目前,该系统已归集低保、特困等11类共121.3万人的数据。
- 山东省:山东省德州市建立了低收入人口动态监测机制,形成一户一档的居民家庭经济状况全景画像,将原来分散在15个职能部门的42项救助政策以及部分福利政策全部纳入大救助平台运行,已实施各类救助帮扶超118万人次。
- 重庆市巴南区:巴南区通过建立低收入人口数据库、信息采集与动态监测预警系统,实现对低收入困难群体的基本生活和经济状况的动态监测预警,确保主动发现、快速处置、精准救助。
- 甘肃省:甘肃省在全国率先研发了困难群众监测预警系统,对存在返贫致贫风险的已脱贫、边缘人口等10大类413.7万人实行动态监测预警。
- 福建省莆田市:莆田市建立了脱贫攻坚社会救助预警监测机制,将符合条件的脱贫不稳定、存在返贫风险的建档立卡贫困户及新增致贫人口纳入兜底保障范围。
- 安徽省:安徽省通过低收入人口动态监测信息平台,实现对低收入人口的动态监测和信息共享,提供常态化的低收入人口救助帮扶服务。
- 山西省:山西省民政厅通过建立低收入人口动态监测信息平台,实现对低收入人口的信息汇聚、监测预警、精准救助。
这些案例展示了各地在低收入人口动态监测方面的积极探索和实践,通过建立和完善监测系统,实现了对低收入人口的精准识别和有效管理。
低收入人口的定义及认定标准如下:
- 低收入人口的定义:
- 低收入人口是指家庭人均收入高于当地最低生活保障标准,但低于该标准的1.5倍,且财产状况符合相关规定的家庭成员。
- 低收入人口包括最低生活保障对象、特困人员、最低生活保障边缘人口、支出型困难人口、防止返贫监测对象及其他低收入人口。
- 认定标准:
- 最低生活保障对象:家庭人均收入低于当地最低生活保障标准,且家庭财产状况符合当地规定的城乡居民。
- 特困人员:无劳动能力、无生活来源且无法定赡养、抚养、扶养义务人,或者其法定义务人无赡养、抚养、扶养能力的人员。
- 最低生活保障边缘人口:不符合低保、特困人员认定条件,共同生活的家庭成员人均收入低于当地城乡低保标准的1.5倍,且家庭财产状况符合低保家庭财产认定条件的人口。
- 支出型困难人口:因病因学因灾因意外事故等导致刚性支出剧增或收入大幅缩减,造成基本生活出现严重困难的人员。
- 防止返贫监测对象:脱贫不稳定户、边缘易致贫户和突发严重困难户。
- 其他低收入人口:县级以上人民政府确定的其他特殊困难家庭或人员。
- 认定程序:
- 低收入人口的认定综合考虑申请对象的家庭人口、收入、财产、支出和实际生活状况。
- 认定方式包括直接认定和依申请认定两种方式。直接认定的对象由民政部门和乡村振兴部门已认定的对象直接确定为低收入人口;低保边缘家庭和支出型困难家庭需通过申请、调查、初审、公示等程序进行认定。
- 动态管理:
- 低收入人口实行动态管理,每年进行经济状况核查,符合条件者可享受社会救助。
- 对低保边缘家庭和支出型困难家庭进行定期核查,并根据核查结果调整认定。
综上所述,低收入人口的认定标准和程序较为严格,旨在确保精准识别和有效帮扶。
低收入人口动态监测系统中的数据采集具体指标与方法如下:
- 数据采集指标:
- 家庭基本情况:包括家庭成员的基本信息、家庭结构、户籍情况等。
- 经济状况:家庭收入、财产、支出等经济数据。
- 健康状况:家庭成员的健康状况,特别是重大疾病、残疾等情况。
- 就业情况:家庭成员的就业状况,包括失业、下岗等情况。
- 住房情况:家庭的住房状况,包括住房面积、住房条件等。
- 教育情况:家庭成员的教育水平,特别是子女的教育资助情况。
- 社会救助情况:家庭享受的社会救助政策,包括低保、特困人员供养、医疗救助等。
- 数据采集方法:
- 个人申请:通过个人主动申请,提供相关证明材料。
- 入户走访:乡镇(街道)组织工作人员上门走访,核实家庭情况。
- 数据比对:通过与医保、教育、人社等部门的数据比对,发现潜在的低收入人口。
- 主动报告:鼓励低收入人口主动报告家庭变化情况。
- 线上线下结合:线上通过信息平台采集数据,线下通过实地走访核实情况。
- 数据采集平台:
- 低收入人口动态监测信息平台:该平台整合了民政、医疗保障、人社、残联等部门的数据,实现信息共享和动态监测。
- 社会救助大数据平台:通过部门间的数据共享,实现对低收入人口的实时监测和预警。
- 数据采集频率:
- 定期更新:每月、每季度、每年定期更新数据,确保信息的时效性。
- 动态监测:通过系统自动预警和人工监督相结合的方式,及时发现和处理低收入人口的变化情况。
- 数据采集责任:
- 属地责任:各级民政部门负责本地区的数据采集工作,确保信息的准确性和完整性。
- 部门协作:各相关部门协同配合,提供必要的数据支持,确保数据的全面性和准确性。
通过上述方法和指标,低收入人口动态监测系统能够实现对低收入人口的精准识别和动态管理,确保社会救助资源的有效配置和精准救助。
动态监测系统所需的数据存储与管理技术主要包括以下几个方面:
- 数据存储:
- 动态监测系统需要具备自动存储静态和动态数据的能力,包括人员、仪器、监测方法、质控方式、关键试剂、监测参数、任务点位、采样信息、现场样品、分析测试结果、环境监测指标、质控信息和样品状态等静态数据库,以及动态数据库。
- 数据存储应采用安全、稳定和高效的数据库技术,并支持异地备份。
- 数据存储方式可以采用分布式、中央集中式或集散式模式,具体选择应根据技术、环境和成本条件确定。
- 数据库应具备独立性、可扩展性、安全性和兼容性,符合相关标准规定。
- 数据管理:
- 数据管理应按权限进行,具备完善的原始记录和数据安全存储与防护措施,防止未经授权的访问、篡改及丢失。
- 数据管理系统负责动态采集的数据、GIS静态数据和日常管理数据,形成属性数据库,为智慧信息管理平台提供调用数据和数据服务。
- 数据管理系统应具备数据查询与管理、统计分析、数据存储、实时画面编辑、监测报警、预警与信息发布等功能。
- 数据传输:
- 数据传输系统负责将监测与控制系统产生的海量源数据传输至动态数据库,供数据管理系统进行加工处理。
- 数据传输方式可以采用有线或无线通信方式,如以太网、GSM、LoRa、Wi-Fi、卫星通讯等。
- 数据传输过程中应确保数据的快速、高效传输,并采用加密和压缩处理技术。
- 数据处理与分析:
- 动态监测系统应具备数据处理和分析功能,能够对采集到的数据进行实时处理和分析,提取有用信息并进行智能化决策。
- 数据处理技术包括数据存储技术、数据挖掘技术和机器学习技术等。
- 数据分析平台应支持趋势图、报表和预警通知的生成,确保数据的及时性和准确性。
- 数据安全与合规:
- 数据存储与处理应遵循网络数据安全等级保护要求。
- 数据管理系统应具备对敏感数据流转情况的监测,及时发现和处置数据泄露威胁。
- 监测信息的保存需按照法规留存时间进行存放和归档。
综上所述,动态监测系统的数据存储与管理技术涉及多个方面,包括数据存储、数据管理、数据传输、数据处理与分析以及数据安全与合规。这些技术共同确保了监测数据的准确性和可靠性,支持系统的高效运行。
实时监测算法与预警机制设计方法
实时监测算法与预警机制设计方法涉及多个关键步骤和技术,包括数据采集、传输、处理、分析和预警信息的生成与推送。以下是基于我搜索到的资料的详细设计方法:
- 数据采集与传输:
- 使用高精度传感器实时采集关键参数,如电流、电压、温度等,确保数据的准确性和可靠性。
- 利用物联网技术,将传感器采集的数据通过无线网络传输至云端服务器或数据处理中心,确保数据的实时性和可访问性。
- 数据处理与分析:
- 在云端服务器或数据处理中心,利用大数据分析和机器学习算法对接收的数据进行处理和分析,构建模型自动识别异常数据。
- 采用递归形式的算法(如卡尔曼滤波算法、遗忘因子算法和梯度算法)提取预警指标,保持与原始传感器采样频率相同的时间分辨率。
- 结合时间驱动和数据驱动的预警模型调度策略,优化预警模型的调度算法和预警流程,满足监测预警的时效性需求。
- 预警机制设计:
- 设计智能预警系统,根据模型预测结果和实时监测数据,及时发出预警信号并进行相应处理。
- 预警信息的类型包括异常数据的类型、位置、时间等详细信息,通过声光报警、短信通知、APP推送等多种方式通知相关人员。
- 预警阈值设定:根据设备的正常运行参数和历史故障数据,设定相应的预警阈值,当设备运行数据超过这些阈值时,触发预警机制。
- 预警响应与跟踪:
- 制定预警响应流程,包括预警确认、原因排查、问题解决、反馈闭环等步骤,确保预警能够得到有效处理。
- 实时跟踪预警信息的处理进展,记录预警响应过程和结果,为后续的数据分析和改进提供支持。
- 预警效果评估:
- 设计预警效果评估指标,监测预警信息的发布效果和响应情况,评估预警系统的准确性和实用性。
- 根据评估结果,及时调整预警规则和发布策略,持续优化预警发布模块的性能和效果。
- 技术支撑:
- 依赖先进的传感器技术、物联网技术、大数据分析和机器学习算法等技术支持。
- 采用高性能的计算设备和通信设施,确保数据的实时处理和传输,提升系统的响应速度和可靠性。
通过上述方法,可以实现高效、准确的实时监测和预警机制,确保在异常情况发生时能够迅速响应并采取有效措施。
根据我搜索到的资料,多源数据融合与更新机制的实现方案可以参考以下内容:
- 多源数据模块:建立一个集成平台,实现多源数据的浏览、查询和共享功能。具体包括数据资源目录、专题图层、地图窗口、区域定位、图层加载、数据下载、图层浏览、分屏、测量、图层控制和图例控制等功能。
- 天地一体化信息网络中的多任务执行与部署规划:通过逻辑管理层次对网络状态和资源进行实时管控,地面控制中心将多个任务切分并融合构成多任务执行图,形成全序抽象任务图。控制层根据网络视图和抽象任务图规划处理路径和部署任务,执行层负责计算和传输任务结果。
- 多源信息融合方法:采用基于概率的数据融合、基于证据的数据融合以及基于人工智能的数据融合等方法。常见的分类方法包括贝叶斯理论、马尔可夫链和蒙特卡罗方法。
- 多源数据融合框架:构建一个基于图的多源数据融合框架,能够融合同一平台不同类型的特征,并利用不同平台的数据特征进行互补,提升任务性能。
- 多源监测数据信息融合处理方法:通过选择合适的数据监测收集设备,利用先进的算法提高数据采集的准确性与效率,确保数据信息处理的准确性。
- 多源异构数据自动融合方法:通过群智能优化算法,实现多源异构数据的自动融合,消除数据冗余,提供一致和完整的数据视图。
- 多源监测数据融合处理方法:通过滤波更新模块和匹配生成对的方法,提高传感器数据融合精度,确保数据的有效性和一致性。
- 多源关系数据融合:构建一个包含模式匹配、实体对齐与实体融合的多源关系数据融合框架,确保数据的一致性和准确性。
- 多源地理空间矢量数据融合:进行坐标系转换、地图投影等预处理,确保不同数据源的统一性和一致性。
- 多源数据湖与数据仓库相融合的数据管理平台:通过云原生数据库和时空引擎,实现多源数据的实时同步和高效管理。
- 多源数据融合技术论文:探讨大数据多源数据融合的重要性、挑战和解决方案,涉及数据清洗、集成、转换和分析等步骤。
- 工业大数据分析电子书:介绍多源工业大数据融合技术,从数据孤岛到多源融合的解决方案。
- 基于CiteSpace研究综述:总结多源数据融合研究的历史、现状和未来趋势,强调跨学科领域的统一概念和方法集成。
- 城市洪涝风险评估中的多源数据融合:基于云平台的多源数据融合技术在城市洪涝风险评估中的应用,通过多源设备组生成初始数据集并进行预处理。
- 多源异构数据处理专利文献:介绍多种专利技术,包括贵金属材料多源异构数据管理、多能源系统多源异构数据融合等。
- DataPipeline数据产品优化:优化数据处理逻辑与用户管理功能,提升数据同步任务的效率与稳定性。
- 紫光云申请的多源数据融合专利:通过搜索分析引擎对大规模、多样化、动态变化的数据源进行有效融合。
- 新型电力系统多源异构数据融合技术:促进源网荷储各主体深度互动,通过主成分分析、聚类算法等方法进行场景划分和聚类降维。
- 交通性能指数基于多源数据融合的平台标准技术:通过数据接入、特征提取、数据匹配和数据融合,生成全市、片区、道路交通运行指数。
- 省级基础地理协同更新系统:通过方案化的多源异构数据对照转换方法,减少数据对照的工作量,提高效率。
这些方案和技术为多源数据融合与更新机制的实现提供了全面的指导和支持。
系统安全防护与隐私保护措施可以总结如下:
- 系统安全架构与设计:
- 在系统设计时,应考虑安全问题并制定降低潜在威胁的措施。
- 系统安全架构应包括最小权限原则、职务分工、有需要知道原则、保护最弱链路等。
- 最小权限原