百川智能发布全场景深度思考模型Baichuan-M1-preview 已在百小应上线

在这里插入图片描述

百川公司宣布,其最新研发的Baichuan-M1系列模型正式面世,包括国内首个全场景深度思考模型Baichuan-M1-preview与行业首个开源医疗增强大模型Baichuan-M1-14B,两款模型均展现了卓越的性能与创新的技术特点。

Baichuan-M1-preview作为国内唯一同时具备语言、视觉和搜索三大领域推理能力的模型,其表现尤为亮眼。在数学、代码等多个权威评测中,Baichuan-M1-preview超越了包括o1-preview在内的多个竞品,展现出强大的深度思考能力。更令人瞩目的是,该模型解锁了“医疗循证模式”,通过引入海量可靠的医学知识库,实现了从证据检索到深度推理的完整端到端服务,能够快速、精准地回答医疗临床、科研问题。这一模式的推出,不仅为医生提供了强大的辅助工具,也极大地提升了普通用户对医疗信息的理解和管理能力。

在这里插入图片描述
与此同时,Baichuan-M1-14B作为Baichuan-M1-preview的小尺寸版本,其医疗能力同样不容小觑。该模型在多个权威医学知识和临床能力评测中,成绩超越了更大参数量的Qwen2.5-72B-Instruct,与o1-mini不相上下。百川公司为了提升Baichuan-M1-14B的医疗能力,进行了大量的数据收集、合成与模型训练工作,确保了模型能够学习到有价值且全面的医疗知识。

Baichuan-M1系列模型的发布,是百川公司在AI医疗领域的又一次重要突破。这两款模型不仅展现了百川公司在技术创新方面的实力,更为推动AI技术在医疗领域的广泛应用提供了有力支持。通过开源Baichuan-M1-14B,百川公司希望能够激发更多创新力量,共同推动中国医疗健康生态的持续进步,助力实现更公平、更高效的高质量医疗服务。

Baichuan-14B-M1

Baichuan-14B-M1 是百川智能从零开始开发的业界首个开源大语言模型,专门针对医疗场景进行了优化。 它不仅在通用能力方面表现出色,在医疗领域也有强大的性能。 在大多数通用基准评估中,它取得了与类似规模的模型相当的结果,而在医疗场景中,它的表现则超过了比它大五倍的模型。 以下是该模型的核心特点:

  • 在 20 万亿字节的高质量医疗和通用数据上从头开始训练。
  • 为 20 多个具有细粒度医疗专业知识的医疗科室提供专业建模。
  • 引入创新模型架构,显著提高上下文理解能力和长序列任务性能。
  • 提供 🤗 基础模型和 🤗 指导模型

📊 基准结果

我们的评估涵盖了所有主流基准,在开源和闭源评估中都取得了优异的指标,展示了出色的医疗场景能力,同时保持了强大的一般性能。

CategoryBenchmarkBaichuan-M1-14B-InstructQwen2.5-14B-InstructQwen2.5-72B-Instructclaude-3.5-sonnet-20241022gpt-4o
Average Score72.2365.3970.5174.8575.00
Clinical Practicecmbclin77.4071.5175.3678.3775.36
clinicalbench_diag70.9068.8572.2375.0073.05
clinicalbench_hos70.0568.8370.5365.5869.38
clinicalbench_treat56.3855.0357.3064.0359.35
rarearena_rdc81.8066.4076.2089.6088.40
rarearena_rds54.0042.6049.8059.8057.20
rarebench59.6052.8060.6065.3062.80
Examscmexam80.1077.7082.7077.5078.00
Pediatric Qualification Exam78.4874.6884.8176.5878.48
Internal Medicine Qualification Exam83.4286.1087.1787.7083.42
General Practice Qualification Exam87.0788.4488.4481.6384.35
USMLE78.0067.2076.7085.9087.10
medbullets66.8854.2264.2972.4075.97
mediq83.4066.8079.9088.8090.20
nejmqa49.7545.6950.7669.5454.31
pubmedqa75.2076.4075.6077.0077.60
redisqa74.5069.7075.0083.2082.80
Basic Capabilitiesmednli_dis80.4068.9074.9058.3079.80
medcalc56.0031.4037.9052.6049.00
MMLU-anatomy80.0067.4171.1186.6791.11
MMLU-virology54.8256.0253.0154.2257.23
MMLU-genetics91.0082.0087.0097.0095.00

代码

我们建议使用最新版本的 Transformers 库(至少 4.47.0)。 下面的代码片段演示了如何使用 Baichuan-M1-14B-Instruct 模型:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# 1. Load pre-trained model and tokenizer
model_name = "baichuan-inc/Baichuan-M1-14B-Instruct"  
tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name,trust_remote_code=True,torch_dtype = torch.bfloat16).cuda()
# 2. Input prompt text
prompt = "May I ask you some questions about medical knowledge?"

# 3. Encode the input text for the model
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# 4. Generate text
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

# 5. Decode the generated text
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


# 6. Output the result
print("Generated text:")
print(response)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值