【Yolov5 VOC数据集训练与识别】

环境部署

部署环境:miniconda3 + python3.8 + pytorch + cuda

安装Miniconda

选择python3的64位版本,即Miniconda3 Windows 64-bit

MiniConda下载链接 https://docs.conda.io/projects/miniconda/en/latest/

安装miniconda完成后,打开Anaconda Prompt,更换源,避免下载依赖时,速度太慢。
在这里插入图片描述
在Prompt中输入:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

创建虚拟环境(指定python版本为3.8.0):

conda create -n myenv python=3.8

进入虚拟环境:

conda activate myenv

检查安装的python版本:

python

此处安装的是python 3.9.0
在这里插入图片描述
退出虚拟环境

conda deactivate 

下载Yolov5和预训练权重文件

Github下载Yolov5

Gihub下载Yolov5: https://github.com/ultralytics/yolov5

百度云下载Yolov5

百度云下载Yolov5 链接:https://pan.baidu.com/s/1VuI5qqz62joV9Ax2a2QTLA?pwd=0j8r
提取码:0j8r

预训练权重文件yolov5s.pt

预训练权重文件yolov5s.pt 链接:https://pan.baidu.com/s/1k0Mz_XDnxrK7DCln6pqhQg?pwd=qzkq
提取码:qzkq

安装Yolov5 所需依赖

解压yolov5压缩包,打开anaconda prompt 进入之前创建的虚拟环境中,cd进入刚刚解压的yolov5目录下,该目录下有个requirements.txt文本
在prompt中输入

在这里插入图片描述

安装完成后查看已经安装的依赖包,输入:

pip list

在这里插入图片描述
注意安装的Pytorch分为CPU版本和GPU版本,如果要使用GPU版本还需要安装显卡对应的CUDA

安装CUDA

查看自己电脑的GPU最高支持什么版本,在CMD中输入如下指令:

-nvidia-smi

在这里插入图片描述

这里以我的GPU为例,RTX4070最高支持CUDA的版本为12.2,但是查资料发现40系显卡最低仅能支持CUDA 11.8.0的版本,而pytorch最高支持的CUDA版本为11.8.0。所以我在安装CUDA的时候选择了11.8.0的版本,pytoch则安装了能够支持CUDA11.8的版本。

安装完后,查看安装的CUDA版本是否正确,在CMD中输入:

nvcc -V

在这里插入图片描述

安装Pytorch

在Pytorch官网选择对应的版本

Pytorch 官网: https://pytorch.org/get-started/locally/

在这里插入图片描述

复制 Run this Command 中的指令,到前面我们创建并安装了Yolov5依赖的Anaconda 虚拟环境的Promot中,并执行 (如果安装太慢可以更换Anaconda的镜像源)

在这里插入图片描述

安装完成后,可以再次查看安装大的版本正不正确,可以输入pip list查看已安装的所有包

在这里插入图片描述

转换VOC数据集为YOLOv5可识别的数据集

VOC数据集

VOC数据集主要分为两个层级:
1 -> Annotations (存放标签的文件夹,里面每一个xml都存储这对应图像的标注信息)
2 -> Images (存放所有的训练图像数据)

我们创建一个叫做mydata的文件夹,在该文件夹下创建如下文件夹:

在这里插入图片描述

将VOC数据中的images图像丢进,上面的images文件夹中,将VOC数据集的Annotations文件丢进上面的xml文件夹中,并在mydata文件夹下创建一个py文件,将数据集进行划分:

import os
import random
import argparse

parser = argparse.ArgumentParser()

#xml->这里是上面存放原VOC Annotations标签文件的地方
parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')

#dataset->这里是刚创建,存放划分好训练集和验证集txt文件的存储地方。
parser.add_argument('--txt_path', default='dataset', type=str, help='output txt label path')

opt = parser.parse_args()

trainval_percent =1.0
train_percent = 0.9
xml_file_path = opt.xml_path
txt_save_path = opt.txt_path
total_xml = os.listdir(xml_file_path)
if not os.path.exists(txt_save_path):
    os.makedirs(txt_save_path)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval,tr)

file_trainval = open(txt_save_path + '/trainval.txt', 'w')
file_test = open(txt_save_path + '/test.txt', 'w')
file_train = open(txt_save_path + '/train.txt', 'w')
file_val = open(txt_save_path + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

执行上面的py代码后,会在dataset中得到如下txt文件,其中我们只划分了训练集、验证集和训练验证集,所有test文件里面为空(正常要有):

在这里插入图片描述

再次在dataset文件夹下创建一个py文件,代码如下:

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["missing_hole"]  # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('xml/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('dataset/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

正常执行后,在mydata文件夹下会生成两个txt文件,里面存储着对应的训练图像的存储位置:

在这里插入图片描述
在这里插入图片描述

在data文件夹下创建一个叫mydata.yaml的文件,在里面配置对应的训练数据文件的地址和训练数据的类别:

在这里插入图片描述

训练数据

在训练代码中,修改 ‘–data’ 为存放上面我们创建的mydata.yaml的路径,修改合适的迭代次数’–epoch’、批处理数’–batchs-size’ (应该为2的倍数)、和训练的图像大小’–imgz’。
在这里插入图片描述

训练报错 - Arial.ttf

在训练过程中,有可能因为没有下载Arial.ttf字体文件而自动下载,在中国大陆,容易下载报错,服务器无响应,这里我们可以提前下载,放进对应的文件夹中 Arial.ttf 下载链接:https://pan.baidu.com/s/1-96nqHsdFsmNxl6uQbl3vw?pwd=hnb8 提取码:hnb8 :

在这里插入图片描述
在这里插入图片描述

开始训练

在这里插入图片描述

训练结果

训练结果会在runs文件夹下生成,如exp29文件夹下所有生成的文件均为训练结果,exp29中的weights文件夹下存放着最后一次训练的权重文件和效果最好一次的训练权重文件。

在这里插入图片描述
在这里插入图片描述

使用训练好的权重模型文件进行预测

在detect.py 文件中修改‘–weights’为我们自己训练好的模型文件地址,‘–source’为预测图像文件夹,’–data’ 为之前创建的mydata.yaml文件,里面有分类类别,‘–imgsz’为预测图像大小,’–conf-thres’为置信度,'–iou-thres’为IoU
在这里插入图片描述

预测结果在runs/detect文件夹下生成

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值