OpenCV学习:Canny边缘检测

第十六课 Canny边缘检测
1.算法介绍
边缘检测算法,常用且使用图像处理算法
2.API
高斯模糊-去噪声GaussianBlur
灰度转换-cvtColor
计算梯度-Sobel/Scharr
非最大信号抑制
高低阈值输出二值信号

	Canny(
	inputArray src,//8bit的输入图像
	outputArray	edges,//输出边缘图像,一般都是二值图像,背景为黑色
	double threshold1,//低阈值,常取高阈值的1/2或1/3
	double threshold2,//高阈值
	int aptertureSize,//Sobel算子的size,通常3×3,取值3
	bool L2gradient//选择true表示L2来归一化,否则用L1归一化,默认L1,参数设置false)

3.代码演示

	#include <opencv2/opencv.hpp>
	#include <iostream>
	#include <math.h>

	using namespace cv;
	Mat src, gray_src, dst;
	int t1_value = 50;
	int max_value = 255;
	const char* OUTPUT_TITLE = "Canny Result";
	void Canny_Demo(int, void*);
	int main(int argc, char** argv) {
		src = imread("D:/vcprojects/images/lena.png");
		if (!src.data) {
			printf("could not load image...\n");
			return -1;
		}

		char INPUT_TITLE[] = "input image";
		namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
		namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
		imshow(INPUT_TITLE, src);

		cvtColor(src, gray_src, CV_BGR2GRAY);
		createTrackbar("Threshold Value:", OUTPUT_TITLE, &t1_value, max_value, Canny_Demo);
		Canny_Demo(0, 0);

		waitKey(0);
		return 0;
	}

	void Canny_Demo(int, void*) {
		Mat edge_output;
		blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);
		Canny(gray_src, edge_output, t1_value, t1_value * 2, 3, false);

		//dst.create(src.size(), src.type());
		//src.copyTo(dst, edge_output);
		// (edge_output, edge_output);
		imshow(OUTPUT_TITLE, ~edge_output);
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值