第十六课 Canny边缘检测
1.算法介绍
边缘检测算法,常用且使用图像处理算法
2.API
高斯模糊-去噪声GaussianBlur
灰度转换-cvtColor
计算梯度-Sobel/Scharr
非最大信号抑制
高低阈值输出二值信号
Canny(
inputArray src,//8bit的输入图像
outputArray edges,//输出边缘图像,一般都是二值图像,背景为黑色
double threshold1,//低阈值,常取高阈值的1/2或1/3
double threshold2,//高阈值
int aptertureSize,//Sobel算子的size,通常3×3,取值3
bool L2gradient//选择true表示L2来归一化,否则用L1归一化,默认L1,参数设置false)
3.代码演示
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
Mat src, gray_src, dst;
int t1_value = 50;
int max_value = 255;
const char* OUTPUT_TITLE = "Canny Result";
void Canny_Demo(int, void*);
int main(int argc, char** argv) {
src = imread("D:/vcprojects/images/lena.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_TITLE[] = "input image";
namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
imshow(INPUT_TITLE, src);
cvtColor(src, gray_src, CV_BGR2GRAY);
createTrackbar("Threshold Value:", OUTPUT_TITLE, &t1_value, max_value, Canny_Demo);
Canny_Demo(0, 0);
waitKey(0);
return 0;
}
void Canny_Demo(int, void*) {
Mat edge_output;
blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);
Canny(gray_src, edge_output, t1_value, t1_value * 2, 3, false);
//dst.create(src.size(), src.type());
//src.copyTo(dst, edge_output);
// (edge_output, edge_output);
imshow(OUTPUT_TITLE, ~edge_output);
}