# Fliptile DFS (POJ-3279)

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers: M and N
Lines 2.. M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1.. M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

//难点在于通过对第一层的判定，从而推导出下一城的结果所以复杂度为O(15*(2^15) )
#include "bits/stdc++.h"

using namespace std;

int f[20][20],g[20][20];
int ans[20][20];
int minn=0x3f3f3f3f;
bool judge(int n,int m)
{
for(int i=1;i<=m;i++)
{
if(( f[n][i]+f[n][i-1]+f[n][i+1]+f[n-1][i]+g[n][i])&1)
return false;
}
return true;
}
void dfs(int n,int m,int k,int num)
{
int cnt=0;
if(minn<num)
{
return;
}
if(k>n)
{
if(judge(n,m)&&minn>num)
{
memcpy(ans,f,sizeof(f));
minn = num;
}
return;
}

for(int i=1;i<=m;i++)
{
if((f[k-2][i]+f[k-1][i-1]+f[k-1][i+1]+f[k-1][i]+g[k-1][i])&1)
{
f[k][i]=1;
cnt++;
}
else
f[k][i]=0;
}
dfs(n,m,k+1,num+cnt);
}
//这段代码可以有意识的记忆，通过递归获取每一种可能性，但是用循环也是可以写的
/*
int f[20];
for(int i=1;i<=(1<<n);i++)
{
for(int j=0;j<=14;j++)
{
if(i>>j&1)
{
f[j]=1;
}
else
f[j]=0;
}
}
*/
void todfs(int n,int m,int k,int num)
{
if(k>m)
{
dfs(n,m,2,num);
return;
}
f[1][k]=0;//没有反转
todfs(n,m,k+1,num);
f[1][k]=1;
todfs(n,m,k+1,num+1);
f[1][k]=1;
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>g[i][j];
}
}
todfs(n,m,1,0);
if(minn==0x3f3f3f3f)
cout<<"IMPOSSIBLE"<<endl;
else
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
cout<<ans[i][j]<<' ';
cout<<endl;
}
}

return 0;
} 

11-02 239
03-08 105

10-26 311
10-10 367
03-21 2749
01-04 76
01-21 151
03-03 635
07-05 508