1 前言
- 对抗样本库,即进行对抗样本攻击或防御的工具。cleverhans,foolbox,advertorch这三个对抗样本库是比较常用的。github搜索关键字即可找到。
- cleverhans在github有5k个star,foolbox 2k个star,advertorch 1k个star。通过该信息自然大家都会选择使用cleverfans。
- cleverhans在之前的版本中只支持tensorflow。如果习惯使用tensorflow,完全可以pip install cleverhans == v3.1.0,下载之前的版本,其中包括很全面的对抗样本攻击。
- 相较而言,我更喜欢使用torch,这就需要下载cleverhans的最新版本,直接pip install cleverhans即可。这个版本兼容torch,tensorflow以及jax,但是这个版本的库仍然在github维护中,其中只包括部分对抗样本攻击实现。
- 因此本文会介绍在cleverhans最新版本下,如何使用torch来实现对抗样本的攻击。
2 cleverhans使用
实验步骤:
- 构建并训练网络模型
- 使用cleverhans实现PGD,DeepFool以及CW攻击
- 可视化
2.1 构建并训练模型
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
# 加载mnist数据集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
# 超参数设置
batch_size = 10
epoch = 1
learning_rate = 0.001
# 生成对抗样本的个数
adver_nums = 1000
# LeNet Model definition
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F