【PyTorch深度学习实践】学习笔记 第九节 实践篇 手写数字图像多分类

课程链接PyTorch深度学习实践第九节课程。
go go go~!

原理介绍

  • 在前面第六讲时,介绍过了可以将逻辑回归看做是仅含有一层神经元的单层的神经网络。一般用于二分类网络,线性可分的情况时是一个线性模型,激活函数为Sigmoid。
  • 在这里将引入更加令人激动的概念——多分类softmax分类器、交叉熵、通道等。

1、 在二分类时,为了映射到0-1时,在线性模型输出后加了激活函数。而softmax的输入不需要再做非线性变换,也就是说softmax之前的不再需要激活函数(这里用的relu ,可见Sigmoid和Relu激活函数的对比)。
softmax两个作用,如果在进行softmax前的input有负数,通过指数变换,得到正数;所有类的概率求和为1。
在这里插入图片描述
2、交叉熵损失就包含了下图中softmax计算和右边的标签输入计算(即框起来的部分)。所以在使用交叉熵损失的时候,神经网络的最后一层是不要做激活的,因为把它做成分布的激活是包含在交叉熵损失里面的(就是softmax)。所以最后一层不要做非线性变换,直接交给交叉熵损失。(一会儿看代码对比第六节 逻辑回归 二分类就明白了)
在这里插入图片描述
3、CrossEntropyLoss <==> LogSoftmax + NLLLoss。对比前面二分类的BCELoss,该损失函数的输入是经过激活的。而这里多分类的CELoss的输入不需要激活。
在这里插入图片描述
4、y的标签编码方式是one-hot。onehot编码:是什么,为什么,怎么样
5、原始图像是28×28的像素值在0到255之间的image,我们需要把它转变成图像张量,像素值是0到1之间。
在这里插入图片描述
6、
在视觉里面,灰度图就是一个矩阵,但实际上并不是一个矩阵,我们把它叫做单通道图像彩色图像是3通道,通道有宽度和高度。一般我们读进来的图像张量是WHC(宽高通道)。

  • 在PyTorch里面我们需要转化成CWH,把通道放在前面是为了在PyTorch里面进行更高效的图像处理,卷积运算。所以拿到图像之后,我们就把它先转化成pytorch里面的一个Tensor,即把0到255的值变成0到1的浮点数,然后把维度由28×28的矩阵变成1×28×28的单通道图像张量
  • 这个过程可以用transforms的ToTensor这个函数实现

在这里插入图片描述

下面来看代码吧

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
 
 
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)
 
    def forward(self, x):
        x = x.view(-1, 784)  # -1其实就是自动获取mini_batch
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # !!神经网络最后一层不做激活,不进行非线性变换
 
 
model = Net()
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        # 获得一个批次的数据和标签
        inputs, target = data
        optimizer.zero_grad()
        # 获得模型预测结果(64, 10)
        outputs = model(inputs)
        # 交叉熵代价函数outputs(64,10),target(64)
        loss = criterion(outputs, target) #直接将神经网络的输出交给CELoss损失函数来处理 
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item() #每个iteration里面都要加起来
        if batch_idx % 300 == 299: #一个epoch为300次迭代
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度
            total += labels.size(0)
            correct += (predicted == labels).sum().item()   # 张量之间的比较运算
    print('accuracy on test set: %d %% ' % (100*correct/total))
 
 
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

代码解释

1、第8讲 from torch.utils.data import Dataset,第9讲 from torchvision import datasets。该datasets里面init,getitem, len魔法函数已实现。(更多了解可以参考PyTorch 详细常用图像数据集加载及预处理(三种)。)
2、torch.max的返回值有两个,第一个是每一行的最大值是多少,第二个是每一行最大值的下标(索引)是多少

_, predicted = torch.max(outputs.data, dim=1)  # dim = 1 列是第0个维度,行是第1个维度
  • debug观察变量," _ "第一个变量的样子。通过debug你会看到各个变量的形式。" _ "是一个tensor,有64个数。每张图像输出的结果是一个1×10的列表,是由神经网络算出的,只不过最后一层输出没有激活,所以不是成概率分布在0-1之间。

  • 另外因为我们不需要这个变量,所以" _ "作为下划线通常表示变量无用,只是作为一个placeholder
    在这里插入图片描述

  • 第二个变量predicted则是每一行的最大值的下标(索引)。

在这里插入图片描述
3、torch.no_grad()用法,训练train时需要更新网络中各权值的梯度,但test测试时不再需要。Python中with的用法
4、torch.max(inputs,dim)使用详解
5、看到predicted " == "labels判两个tensor是否相等,又想了解一下pytorch如何判断两个Tensor是否相等。
如果是标量,可以直接进行 " == "判断。
如果是向量或矩阵,则torch.eq

torch.eq(torch.tensor([[1., 2.], [3., 4.]]), torch.tensor([[1., 1.], [4., 4.]]))
>>>tensor([[True, False], [False, True]])

或者torch.equal对于整个张量:

torch.equal(torch.tensor([[1., 2.], [3, 4.]]), torch.tensor([[1., 1.], [4., 4.]]))
>>> False
torch.equal(torch.tensor([[1., 2.], [3., 4.]]), torch.tensor([[1., 2.], [3., 4.]]))
>>> True

最后

关于为什么准确率到97%就上不去了。
因为用的全连接神经网络,而忽略了对局部信息的利用,把所有元素之间都做了全连接,也就是说图像里面某一个元素和其他元素都要产生联系,所以处理的时候权重不够高。处理图像的时候更关心高抽象级别的特征,我们用的是比较原始的特征,所以如果我们用某些特征提取,再去做分类训练,可能效果会更好一点,既然是图像,我们考虑自动提取特征。
图像特征提取:FFT(傅里叶变换)整张图片特征提取,转变成频域来表示,傅里叶变换的缺陷:都是正弦波,因为正弦波是周期性的,在叠加的时候,如果不是周期性特别好的输出,拟合还是会有些问题,所以更倾向于用小波变换做特征提取
自动特征提取:CNN 参考链接

by 小李

如果你坚持到这里了,请一定不要停,山顶的景色更迷人!好戏还在后面呢。加油!
欢迎交流学习和批评指正,你的点赞和留言将会是我更新的动力!谢谢😃

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值