前言:
from torch.utils.data import Dataset
from torchvision import datasets
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
1、Dataset 在 torch.utils.data 无论是加载文本还是图像数据集,加载自定义数据集都需要他。官方提供的dataset则从torchvision里import。
2、DataLoader 在torch.utils.data 不管是文本还是图片都用这个包。
3、 对图像的预处理 用torchvision.transforms 包 。
数据预处理部分:
- 数据增强:torchvision中transforms模块自带功能,比较实用
- 数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可
data_transforms = {
'train': transforms.Compose([transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
transforms.CenterCrop(224),#从中心开始裁剪
transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
]),
'valid': transform

本文详细介绍了如何使用PyTorch定制数据集,包括Dataset与DataLoader的基本原理,以及如何通过torchvision进行数据增强和预处理。着重讲解了如何从txt文件读取数据并构建MyDataset类,以及使用ImageFolder加载torchvision内置数据集的方法。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



