在之前的微积分学习中,通过实例了解到了 e t e^t et的性质
-
e t e^t et的导数等于它本身,那么 d / d t ( e a t ) = a ∗ e a t d/dt(e^{at})=a*e^{at} d/dt(eat)=a∗eat
-
任何数的0次方等于1
假如函数
e
t
e^t
et描述了数轴上的位置,它随着事件而变化y=
e
t
e^t
et,t代表时间,输出值y等于位置
那么位置将从1开始,因为t=0时y=1
因为
e
t
e^t
et的导数等于本身,任何时候速度的值等于位置本身
通过位置与速度的关系,就可以只管的理解这个函数关系
当指数是常数倍的时候,速度就等于位置的常数倍
如果指数的倍数是负数,表示先翻转向量,再缩放
当倍数常数是代表-1开方的i,
旋转90°,已经超出了数轴,我们用复平面来表示
这个向量,就是 a + b ∗ i a+b*i a+b∗i
它的初始状态 e i ∗ 0.00 = 1.00 + 0.00. ∗ i e^{i*0.00}=1.00+0.00.*i ei∗0.00=1.00+0.00.∗i
1个单位时间后,速度为1个单位,走过了一个圆
π
\pi
π秒之后,到达了x轴负半轴,所以
e
i
π
=
−
1
+
0.00
i
=
−
1
e^{i\pi}=-1+0.00i=-1
eiπ=−1+0.00i=−1
τ
\tau
τ秒之后,(
τ
\tau
τ=2
π
\pi
π),走了一个圆周的距离,
e
i
τ
=
1
+
0.00
i
=
1
e^{i\tau}=1+0.00i=1
eiτ=1+0.00i=1
由此可以看出,复指数可以看着做单位弧度