微分方程5_如何理解$e^i*pi

在之前的微积分学习中,通过实例了解到了 e t e^t et的性质

  1. e t e^t et的导数等于它本身,那么 d / d t ( e a t ) = a ∗ e a t d/dt(e^{at})=a*e^{at} d/dt(eat)=aeat

  2. 任何数的0次方等于1

在这里插入图片描述

假如函数 e t e^t et描述了数轴上的位置,它随着事件而变化y= e t e^t et,t代表时间,输出值y等于位置
在这里插入图片描述
那么位置将从1开始,因为t=0时y=1
在这里插入图片描述
因为 e t e^t et的导数等于本身,任何时候速度的值等于位置本身

在这里插入图片描述
通过位置与速度的关系,就可以只管的理解这个函数关系
在这里插入图片描述
当指数是常数倍的时候,速度就等于位置的常数倍
在这里插入图片描述
在这里插入图片描述
如果指数的倍数是负数,表示先翻转向量,再缩放
在这里插入图片描述
在这里插入图片描述

当倍数常数是代表-1开方的i,
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
旋转90°,已经超出了数轴,我们用复平面来表示

在这里插入图片描述

在这里插入图片描述

这个向量,就是 a + b ∗ i a+b*i a+bi

它的初始状态 e i ∗ 0.00 = 1.00 + 0.00. ∗ i e^{i*0.00}=1.00+0.00.*i ei0.00=1.00+0.00.i

在这里插入图片描述

1个单位时间后,速度为1个单位,走过了一个圆
在这里插入图片描述

π \pi π秒之后,到达了x轴负半轴,所以 e i π = − 1 + 0.00 i = − 1 e^{i\pi}=-1+0.00i=-1 eiπ=1+0.00i=1
在这里插入图片描述
τ \tau τ秒之后,( τ \tau τ=2 π \pi π),走了一个圆周的距离,
e i τ = 1 + 0.00 i = 1 e^{i\tau}=1+0.00i=1 eiτ=1+0.00i=1

在这里插入图片描述
由此可以看出,复指数可以看着做单位弧度
在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值