e的矩阵指数
e [ 1 2 3 3 4 5 5 6 7 ] e^{ \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \\ \end{bmatrix} } e[135246357]
代表的一种运算:
甚至物理定律都是由微分方程来描述
这里的指数不是把e乘自己多少次,而是关于e的x次方的多项式
当x=2时,带入上式:
总和会趋于一个常数,恰好是e×e
x=3时也成立
x可以是任意的变量,甚至矩阵:
当x是一个矩阵时,表示成e的矩阵指数,其实这算是数学家的一种发明而已
但是这个矩阵必须是n×n
才能自己乘以自己
结果再乘以原矩阵,即自己乘自己三次,即矩阵的立方
一直乘下去可以实现任意次方
每一项就等于矩阵的n次方除以n的阶乘
而矩阵除以n的阶乘这个运算就是要把矩阵;里的每一项除以n的阶乘
考虑矩阵 [ 0 − π π 0 ] \begin{bmatrix} 0 & -\pi \\ \pi& 0 \\ \end{bmatrix} [0π−π0]
当算到第10项以后,等式的值趋于 [ − 1 0 0 − 1 ] \begin{bmatrix} -1 & 0 \\ 0& -1 \\ \end{bmatrix} [−100−1]
算到第十项的值:
算到第17项的值
推广到任意矩阵,当算到一定项之后,结果总是趋近一个值,后面的第n+1项的值越来越趋近与0
这既是欧拉公式的矩阵化表示
如图关于x(t)和y(t) 的变化关系,
x的微小变化会引起y的变化
这就是微分方程组,要求你找出x(t) and y(t),使得两个方程同时成立
答案就是cos(t)和sin(t)
当时我们如何找到方法系统解决这一类问题呢
这些问题都可以用指数方程来解决
上面romeo和juliet的问题可以用高维整合到一个坐标系
x(t),y(t)是关于时间的函数
当我们把x(t),y(t)看成向量时
x的变化率是-y
y的变化率是x
也可以表示为原向量与
[
0
−
1
1
0
]
\begin{bmatrix} 0 & -1 \\ 1& 0 \\ \end{bmatrix}
[01−10]的乘积:
(线性变换思想)
用公式表示就是:
(函数在某点处的变化率定义为函数值的增量与自变量增量的比值在自变量增量趋于零时的极限,该极限称为函数在该点处的变化率,定义域内的任意一点处的变化率则称为该函数在其定义域内的导函数(前提为该极限存在,即可导))
几何推导:
[
0
−
1
1
0
]
\begin{bmatrix} 0 & -1 \\ 1& 0 \\ \end{bmatrix}
[01−10]所代表的是逆时针旋转90°的变换
(变化率原本是蓝色向量,旋转90°变成红色向量)
变换前后向量的大小没变
用更普遍的三角函数表示就是:
向量
所代表的变换等于:
所以,只要我们知道初始状态
x
0
,
y
0
x_0,y_0
x0,y0,就可以求出任意时刻的x(t),y(t)
矩阵指数推导:
用指数矩阵表示就是:
求解这个指数矩阵,会发现每四步实现一个循环
旋转90°×4=360°
矩阵里的每一部分都是sin和cos的泰勒展开
(用多项式取近似正弦,余弦函数)
两种推导得到相同的结果
来看物理中的典型方程薛定谔方程
也可以把
看成是一种复杂的矩阵系统
一维的指数变化率的几何表示
二维的一个变化的向量的变化率,等于一个矩阵乘以自己
最终的解是一个指数向量乘以初始向量
用向量场将上面的方程可视化
这个方程的内在含义就是这个系统的速度向量是由它所在的位置决定的
我们在空间的每一点上画出速度向量
过程:
所以我们知道了某一点的初始值,就知道在这个系统里是如何运动