大数定律与中心极限定理

大数定律与中心极限定理

  • 大数定律是指在随机试验中,每次出现的结果不同,但是大量重复试验出现的结果的平均值却几乎总是接近于某个确定的值
  • 中心极限定理指出大量的独立随机变量之和具有近似于正态分布

大数定律

辛钦大数定理
X 1 , X 2 , . . . X_1,X_2,... X1,X2,...是相互独立,服从同一分布的随机变量序列,且具有数学期望 E ( X k ) = μ , k = 1 , 2... E(X_k)=\mu,k=1,2... E(Xk)=μ,k=1,2...,则对于任意 ε > 0 \varepsilon>0 ε>0 lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum_{k=1}^nX_k-\mu|<\varepsilon\}=1 limnP{n1k=1nXkμ<ε}=1
辛钦大数定理证明
证:方差 V a r ( X k ) = σ 2 , k = 1 , 2 , … Var(X_k)=\sigma^2,k=1,2,\dots Var(Xk)=σ2,k=1,2,
因为 E ( 1 n ∑ k = 1 ∞ X i ) = 1 n ∑ k = 1 ∞ E ( X i ) = 1 n ( n μ ) = μ E(\frac{1}{n}\sum_{k=1}^{\infty}X_i)=\frac{1}{n}\sum_{k=1}^{\infty}E(X_i)=\frac{1}{n}(n\mu)=\mu E(n1k=1Xi)=n1k=1E(Xi)=n1(nμ)=μ
又由独立性得:
V a r ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n V a r ( X k ) = 1 n 2 ( n σ 2 ) = σ 2 n Var(\frac{1}{n}\sum_{k=1}^{n}X_k)=\frac{1}{n^2}\sum_{k=1}^{n}Var(X_k)=\frac{1}{n^2}(n\sigma^2)=\frac{\sigma^2}{n} Var(n1k=1nXk)=n21k=1nVar(Xk)=n21(nσ2)=nσ2
由切比雪夫不等式得: 1 ≥ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } ≥ 1 − σ 2 n ε 2 1\ge P\lbrace |\frac{1}{n}\sum_{k=1}^{n}X_k-\mu|<\varepsilon \rbrace \ge 1-\frac{\frac{\sigma^2}{n}}{\varepsilon^2} 1P{n1k=1nXkμ<ε}1ε2nσ2
若上式中令 n → ∞ n \rightarrow \infty n,即得: lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim_{n \rightarrow \infty}P \lbrace |\frac{1}{n}\sum_{k=1}^{n}X_k-\mu| < \varepsilon\rbrace=1 limnP{n1k=1nXkμ<ε}=1
伯努利大数定理
f k f_k fk是n次独立重复试验中事件A发生的次数,p是事件A每次试验中发生的概率,则对任意正数 ε > 0 \varepsilon>0 ε>0,有 lim ⁡ n → ∞ P { ∣ f A n − p ∣ < ε } = 1 \lim_{n\rightarrow\infty}P\{|\frac{f_A}{n}-p|<\varepsilon\}=1 limnP{nfAp<ε}=1 lim ⁡ n → ∞ P { ∣ f A n − p ∣ ≥ ε } = 0 \lim_{n\rightarrow\infty}P\{|\frac{f_A}{n}-p|\ge \varepsilon\}=0 limnP{nfApε}=0
伯努利大数定理证明
证:因为 μ n \mu_n μn~b(n,p),由切比雪夫不等式得:
1 ≥ P { ∣ μ n n − p ∣ < ε } ≥ 1 − V a r ( μ n n ) ε 2 = 1 − p ( 1 − p ) ε 2 1 \ge P\lbrace|\frac{\mu_n}{n}-p| < \varepsilon \rbrace \ge 1-\frac{Var(\frac{\mu_n}{n})}{\varepsilon^2}=1-\frac{p(1-p)}{\varepsilon^2} 1P{nμnp<ε}1ε2Var(nμn)=1ε2p(1p)
n → + ∞ n \rightarrow +\infty n+时,上式右端趋于1,因此 lim ⁡ n → + ∞ P { ∣ μ n n − p ∣ < ε } = 1 \lim_{n\rightarrow +\infty}P \lbrace |\frac{\mu_n}{n}-p| < \varepsilon \rbrace =1 limn+P{nμnp<ε}=1结论得证
切比雪夫大数定律
{ X n } \lbrace X_n \rbrace {Xn}为一列两两不相关的随机变量序列,若每个 X i X_i Xi的方差存在,且有共同上界,即 V a r ( X i ) ≤ c , i = 1 , 2 , ⋯ Var(X_i) \le c,i=1,2,\cdots Var(Xi)c,i=1,2,,则 { X n } \lbrace X_n \rbrace {Xn}服从大数定律,即对任意的 ε > 0 \varepsilon>0 ε>0,有
P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε } ≥ 1 − V a r ( 1 n ∑ i = 1 n X i ) ε 2 ≥ 1 − c n ε 2 P\lbrace |\frac{1}{n}\sum_{i=1}^{n}X_i-\frac{1}{n}\sum_{i=1}^{n}E(X_i)|<\varepsilon \rbrace \ge 1-\frac{Var(\frac{1}{n}\sum_{i=1}^{n}X_i)}{\varepsilon^2} \ge 1-\frac{c}{n\varepsilon^2} P{n1i=1nXin1i=1nE(Xi)<ε}1ε2Var(n1i=1nXi)1nε2c
于是当 n → + ∞ n \rightarrow +\infty n+时,有
lim ⁡ n → + ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε } = 1 \lim_{n \rightarrow +\infty}P\lbrace |\frac{1}{n}\sum_{i=1}^{n}X_i-\frac{1}{n}\sum_{i=1}^{n}E(X_i)|<\varepsilon \rbrace=1 limn+P{n1i=1nXin1i=1nE(Xi)<ε}=1.
马尔可夫大数定律
对随机变量序列 { X n } \lbrace X_n \rbrace {Xn},若 1 n 2 V a r ( ∑ i = 1 n X i ) → 0 \frac{1}{n^2}Var(\sum_{i=1}^{n}X_i) \rightarrow 0 n21Var(i=1nXi)0成立,则 X n X_n Xn服从大数定律,即对任意的 ε > 0 \varepsilon>0 ε>0,
lim ⁡ n → + ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n E ( X i ) ∣ < ε } = 1 \lim_{n \rightarrow +\infty}P\lbrace| \frac{1}{n}\sum_{i=1}^{n}X_i-\frac{1}{n}E(X_i)|<\varepsilon \rbrace=1 limn+P{n1i=1nXin1E(Xi)<ε}=1

中心极限定理

林德伯格——列维中心极限定理(独立同分布情形下的中心极限定理)
X 1 , X 2 , … X_1,X_2,\dots X1,X2,是一个独立同分布的随机变量序列,且 E ( X i ) = μ , V a r ( X i ) = σ 2 > 0 , i = 1 , 2 , … E(X_i)=\mu,Var(X_i)=\sigma^2>0,i=1,2,\dots E(Xi)=μ,Var(Xi)=σ2>0,i=1,2,则对任意的 x ∈ ( − ∞ , + ∞ ) x \in (-\infty,+\infty) x(,+)总有 lim ⁡ n → ∞ P ( ∑ i = 1 n X i − n μ n σ ≤ x ) = Φ ( x ) \lim_{n \rightarrow \infty}P(\frac{\sum_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma} \le x)=\Phi(x) limnP(n σi=1nXinμx)=Φ(x)
其中 Φ ( x ) \Phi(x) Φ(x)是N(0,1)的分布函数
德莫弗-拉普拉斯中心极限定理
X 1 , X 2 , … X_1,X_2,\dots X1,X2,是一个独立同分布的随机变量序列,且每个 X i X_i Xi都服从0—1分布B(1,p),则对任意一个x, − ∞ < x < ∞ -\infty<x<\infty <x<总有 lim ⁡ n → ∞ P ( ∑ i = 1 n X i − n p n p ( 1 − p ) ≤ x ) = Φ ( x ) \lim_{n \rightarrow \infty}P(\frac{\sum_{i=1}^nXi-np}{\sqrt{np(1-p)}} \le x)=\Phi(x) limnP(np(1p) i=1nXinpx)=Φ(x)
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛者无名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值