Sentinel 2 MSI 波段组合

本文介绍了Sentinel-2卫星的MSI波段组合,包括自然色、假彩色、短波红外、农业和地质用途的组合。这些组合帮助揭示图像中的特定信息,如植被健康、地质特征和水深。例如,自然色用于真实地显示图像,假彩色强调植被,而水分指数则用于评估植物的水分状况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总共有13个波段。每个波段的像素大小为10米、20米或60米。
Sentinel-2由2颗卫星组成。首先是2015年发射的Sentinel 2A和2017年发射的Sentinel 2B。
另外两颗卫星(Sentinel 2C和2D)计划于2020年和2021年发射。这将总共制造4颗“哨兵-2”卫星。
总的来说,这两颗额外的卫星将把重访时间缩短一半。


Sentinel-2携带多光谱成像仪(MSI)。该传感器可提供空间分辨率为10到60米的13个光谱波段。
它的blue (B2), green (B3), red (B4), 和near-infrared (B8)通道分辨率为10米。
其次,其red edge(B5)、near-infrared NIR(B6、B7、B8A)和short-wave infrared SWIR (B11、B12)地面采样距离为20米。
最后,它的coastal aerosol (B1)和cirrus (B10)的空间分辨率为60米。

BandResolutionCentral WavelengthDescription
B160 m443 nmUltra blue (Coastal and Aerosol)
B210 m490 nmBlue
B310 m560 nmGreen
B410 m665 nmRed
B520 m705 nmVisible and Near Infrared (VNIR)
B620 m740 nmVisible and Near Infrared (VNIR)
B720 m783 nmVisible and Near Infrared (VNIR)
B810 m842 nmVisible and Near Infrared (VNIR)
B8a20 m865 nmVisible and Near Infrared (VNIR)
B960 m940 nmShort Wave Infrared (SWIR)
B1060 m1375 nmShort Wave Infrared (SWIR)
B1120 m1610 nmShort Wave Infrared (SWIR)
B1220 m2190 nmShort Wave Infrared (SWIR)

我们使用波段组合来更好地理解图像中的特征。我们做到这一点的方法是用创造性的方式重新安排可用的通道。通过波段组合,我们可以从图像中提取特定的信息。例如,在图像中有突出地质、农业或植被特征的波段组合。

Natural Color (B4, B3, B2)

真彩色组合采用红(B4)、绿(B3)、蓝(B2)通道。它的目的是展示图像,就像我们的眼睛看世界一样。就像我们看到的,健康的植物是绿色的。其次,城市特征经常出现白色和灰色。最后,水是深蓝色的,这取决于它的纯净程度。 

假彩色 (B8, B4, B3)

彩色红外波段组合旨在强调健康和不健康的植被。通过使用近红外 (B8) 波段,它特别擅长反射叶绿素。这就是为什么在彩色红外图像中,较密集的植被是红色的。但城市地区是白色的。

 

短波红外(B12、B8A、B4)

短波红外波段组合使用 SWIR (B12)、NIR (B8A) 和红色 (B4)。该合成图以各种深浅的绿色显示植被。一般而言,较深的绿色表示较密集的植被。但棕色表示裸露的土壤和建成区。

农业(B11、B8、B2)

农业波段组合使用 SWIR-1 (B11)、近红外 (B8) 和蓝色 (B2)。它主要用于监测作物的健康状况,因为它如何使用短波和近红外。这两条带都特别擅长突出显示为深绿色的茂密植被。

地质(B12、B11、B2)

地质带组合是寻找地质特征的巧妙应用。这包括断层、岩性和地质构造。通过利用 SWIR-2 (B12)、SWIR-1 (B11) 和蓝色 (B2) 波段,地质学家倾向于使用这种 Sentinel 波段组合进行分析。

水深 (B4, B3, B1)

顾名思义,测深波段组合有利于海岸研究。测深波段组合使用红色 (B4)、绿色 (B3) 和沿海波段 (B1)。通过使用沿海气溶胶带,有利于估计水中的悬浮沉积物。

植被指数 (B8-B4)/(B8+B4)

由于近红外(植被强烈反射)和红光(植被吸收),植被指数有利于量化植被数量。归一化差异植被指数的公式为(B8-B4)/(B8+B4)。高值表示茂密的树冠,低值或负值表示城市和水体特征。

水分指数 (B8A-B11)/(B8A+B11)

水分指数是发现植物水分胁迫的理想选择。它使用短波和近红外来生成水分含量指数。一般来说,较湿的植被具有较高的价值。但较低的水分指数值表明植物因水分不足而受到压力。

### Sentinel-2卫星波段信息概述 Sentinel-2卫星属于欧洲空间局(ESA)哥白尼计划的一部分,配备了先进的多光谱成像仪(MSI),能够提供高分辨率的地球观测数据。该仪器具有13个不同的波段,涵盖了从可见光到短波红外的范围,这些波段的空间分辨率分别为10米、20米和60米[^1]。 以下是各波段的具体描述及其主要用途: | 波段编号 | 中心波长 (μm) | 空间分辨率 (m) | 主要用途 | |----------|----------------|------------------|------------------------------------------------------------------------| | B1 | 0.443 | 60 | 大气校正辅助 | | B2 | 0.490 | 10 | 蓝色波段,用于水体穿透性和植被健康状况分析 | | B3 | 0.560 | 10 | 绿色波段,主要用于植被指数计算 | | B4 | 0.665 | 10 | 红色波段,广泛应用于植被覆盖度估算 | | B5 | 0.705 | 20 | 近红外波段边缘,有助于区分不同类型的植被 | | B6 | 0.740 | 20 | 植被冠层结构研究 | | B7 | 0.783 | 20 | 土壤湿度检测 | | B8 | 0.840 | 10 | 宽带近红外波段,常用于NDVI(归一化差异植被指数)计算 | | B8A | 0.865 | 20 | 窄带近红外波段,增强植被分类精度 | | B9 | 0.945 | 60 | 水汽吸收特性分析 | | B10 | 1.375 | 60 | 穿透云雾的能力 | | B11 | 1.610 | 20 | 短波红外波段,适用于土壤和地质特征识别 | | B12 | 2.190 | 20 | 短波红外波段,支持土地覆盖类型分类 | 通过上述表格可以看出,每个波段都有特定的应用场景,例如B2至B4适合于基础的地表反射率测量;而B8则因其宽带设计成为植被监测的核心工具之一。 此外,为了方便科研人员获取并处理这些丰富的遥感数据,欧空局提供了多个官方渠道供用户下载Sentinel-2的数据集,比如The Sentinels Scientific Data Hub 和ONDA网站等[^2]。 最后值得一提的是,由于其卓越的技术性能——包括但不限于较短的重访周期(当前双星配置下可达5天)、极高的地面覆盖率以及多样化的光谱响应选项,使得Sentinel-2在诸如环境变化跟踪、精准农业实践指导等多个领域都展现出了不可替代的价值[^3]。 ```python import numpy as np from matplotlib import pyplot as plt # 示例代码展示如何加载并显示某一波段图像 def load_sentinel_band(file_path, band_number): """ 加载指定路径下的Sentinel-2某一波段数据 参数: file_path: str 文件路径 band_number: int 波段号 返回: ndarray 图像数组 """ data = np.load(file_path)[f'B{band_number}'] return data image_data = load_sentinel_band('path_to_your_file.npy', 4) # 加载红色波段(B4) plt.imshow(image_data, cmap='gray') plt.title("Sentinel-2 Band 4 Image") plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值