floyd算法-求多源最短路径

图论里一个很重要的问题是最短路径问题.

这个问题,在离散数学课上会考,数据结构与算法课上会考,图论课上会考,计算机网络里会考....

解决最短路径问题有几个出名的算法:

1.dijkstra算法,最经典的单源最短路径算法

2.bellman-ford算法,允许负权边的单源最短路径算法

3.spfa,其实是bellman-ford+队列优化,其实和bfs的关系更密一点

4.floyd算法,经典的多源最短路径算法

今天我们讨论的是floyd算法,它用于解决多源最短路径问题,算法时间复杂度是O(n3).

floyd算法为什么经典,因为它只有5行(或者4行)!!!

是的,没有特意的写成一行的代码.

这个算法短的离谱,以致于我们通常直接将它背了下来当模板使用,而不像学dijkstra那时候一步步理解它是如何贪心的.

那么,为什么floyd算法是这个样子的呢?或者说,为什么这样就能求出所有点到所有点的最短路径?

谈起floyd算法,一般我们会说这是一个动态规划算法.(怪不得如此优美)

为什么是个动态规划算法?因为它有递推公式:d[i][j]=min(d[i][j],d[i][k]+d[k][j])

还有一点就是三重循环,k要写外面,里面的i,j是对称的,随便嵌套没所谓.

这大概就是我们大部分人对floyd算法的了解.

那么,我们其实没有解决核心问题,为什么这样就能解决问题,为什么是这个递推公式,是这个嵌套顺序?

这一切都不像学长所说的那么显然...

事实上,如果你明白了bellman-ford的正确性,你就会明白为什么floyd是可行的了.

在这里我们不讨论floyd以外的算法,我们正面刚floyd.

floyd的最关键的地方是它的递推公式,它的递推公式写得抽象一点就是下图:

简单来说,这个i到j的最短路径,我们可以找一个中间点k,然后变成子问题,i到k的最短路径和k到j的最短路径.

也就是说,我们可以枚举中间点k,找到最小的d[i][k]+d[k][j],作为d[i][j]的最小值.

这好像很合理啊,假如所有d[i][k]和d[k][j]都取了最小值的话,这个dp很dp.

但是,d[i][k]和d[k][j]一开始都不一定取了最小值的啊!它们和d[i][j]一样,会不断变小.

那么,会不会存在这种情况,d[i][j]取最小值时的k是某个x.

而在最外循环k=x的时候,d[i][x]或者d[x][j]并没有取到最小值,但这个时候会执行d[i][j]=min(d[i][j],d[i][x]+d[x][j]),造成了d[i][j]并不能取到真正的最小值.

答案当然是,并不会出现这种情况.我们今天的重点就是来讨论为什么不会出现这种情况.

我们需要证明一个很致命的结论:

假设i和j之间的最短路径上的结点集里(不包含i,j),编号最大的一个是x.那么在外循环k=x时,d[i][j]肯定得到了最小值.

怎么证明,可以用强归纳法.

设i到x中间编号最大的是x1,x到j中间编号最大的是x2.

由于x是i到j中间编号最大的,那么显然x1<x,x2<x.

根据结论,k=x1的时候d[i][x]已经取得最小值,k=x2的时候d[x][j]已经取得最小值.

那么就是k=x的时候,d[i][x]和d[x][j]肯定都已经取得了最小值.

因此k=x的时候,执行d[i][j]=min(d[i][j],d[i][x]+d[x][j])肯定会取得d[i][j]的最小值.

证毕.

用强归纳法证明固然优美,但是显得有点抽象,并且我们忽略了一些初始情况和特殊情况(比如i和j之间没有结点).

现在,我们举一个实际的例子,去说明它的正确性.

上图是1到5的最短路径,这意味着d[1][2],d[2][4],d[4][3],d[3][5]在一开始就是最小值了.

这在某种程度上证明了我们那个结论,因为中间无结点,相当于最大编号是-∞,就是k=-∞,即一开始的时候就取了最小值了.

首先第一轮k=1,不难知道,1到5这些点之间原本没能取得最短距离的,更新后也没能保证取得最短距离.

第二轮k=2,我们发现d[1][4]肯定取得了最小值,因为会执行d[1][4]=min(d[1][4],d[1][2]+d[2][4]),而d[1][2]和d[2][4]已经是最小值.

第三轮k=3,我们发现d[4][5]肯定取得了最小值.

第四轮k=4最关键,我们发现d[2][3],d[1][3],d[2][5],d[1][5]都肯定取得了最小值.

d[2][3]=d[2][4]+d[4][3]

d[1][3]=d[1][4]+d[4][3]

d[2][5]=d[2][4]+d[4][5]

d[1][5]=d[1][4]+d[4][5]

我们可以看到,等号右边的几个值,都在k=4之前取得了最小值.

这意味着d[1][3]的更新就是最小的了,不会存在d[1][4]未取最小值导致d[1][3]未取得最小的情况发生.

并且,我们看到1到4之间的最大编号是2,而d[1][4]在k=2时肯定取得了最小值,后面的也是同理.

这在感性上证明了我们那个致命的结论.

有了这个致命的结论,根据一开始的推理,其实已经可以显然地理解为什么floyd是正确的了.

事实上,假如在执行d[i][j]=min(d[i][j],d[i][k]+d[k][j])前,对于所有的k,d[i][k]和d[k][j]都是最小值,那么上面例子里d[1][5]之间的k可以选择2,3,4.

但是,我们没法做到对于所有的k,执行那个语句前d[i][k]和d[k][j]都是最小值.

但是,我们保证了能存在一个k=x,在执行那个语句前d[i][x]和d[x][j]都是最小值.

而这个x,是i和j最短路径的点集里最大的编号.

这也说明了为什么k一定要是在最外层的原因,

因为假如k在最里层,那么d[i][j]=min(d[i][j],d[i][k]+d[k][j])是一次性执行完.

那么我们就要保证,在这时候,至少存在一个k=x,使得d[i][x]和d[x][j]都是取得了最小值.

然而在这种情况下我们并不能保证,但如果k在最外层就可以保证了.
————————————————
版权声明:本文为CSDN博主「ljhandlwt」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ljhandlwt/article/details/52096932

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是一个简单的代码示例,其中包括创建有向图和 Dijkstra 算法、Floyd-Warshall 算法的实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int MAXN = 1005; // 最大顶点数 const int INF = 0x3f3f3f3f; // 无穷大 struct Edge { // 边的结构体 int to; // 终点 int w; // 权重 Edge(int _to, int _w) : to(_to), w(_w) {} }; vector<Edge> G[MAXN]; // 邻接表存储图 int n, m; // 顶点数、边数 int dist[MAXN]; // 存储 Dijkstra 算法中的最短距离 int d[MAXN][MAXN]; // 存储 Floyd-Warshall 算法中的最短距离 // 初始化有向图,邻接矩阵建立有向有权重图 void CreateGraph() { cin >> n >> m; memset(d, INF, sizeof(d)); // 初始化 Floyd-Warshall 矩阵 while (m--) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); // u -> v,权重为 w,加入邻接表 d[u][v] = min(d[u][v], w); // 更新 Floyd-Warshall 矩阵 } } // Dijkstra 算法求单源最短路径 void Dijkstra(int s) { memset(dist, INF, sizeof(dist)); dist[s] = 0; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; q.push(make_pair(0, s)); while (!q.empty()) { auto p = q.top(); q.pop(); int d = p.first; // 当前点到起点的距离 int v = p.second; // 当前点的编号 if (dist[v] < d) continue; for (int i = 0; i < G[v].size(); i++) { Edge e = G[v][i]; if (dist[e.to] > dist[v] + e.w) { dist[e.to] = dist[v] + e.w; q.push(make_pair(dist[e.to], e.to)); } } } } // Floyd-Warshall 算法求多源最短路径 void FloydWarshall() { for (int k = 1; k <= n; k++) { for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } } } } int main() { CreateGraph(); Dijkstra(1); // 求从起点 1 到其他所有点的最短距离 for (int i = 1; i <= n; i++) { cout << dist[i] << ' '; } cout << endl; FloydWarshall(); // 求任意两点间的最短距离 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { cout << d[i][j] << ' '; } cout << endl; } return 0; } ``` 以上是一个简单的实现,你可以根据自己的需要进行修改和优化。希望能够帮到你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值