黄高 清华大学自动化系助理教授
2020.12.10
在这里插入图片
描述
轻量化的模型
神经网络结构搜索
动态模型
transformer在视觉里面的结构设计
右边三个 是 结构搜索出来的模型,更大的搜索空间
NAS四个关键问题
离散搜索问题
怎样将神经网络结构的设计问题 转换为 搜索问题?
搜索集定义的很好,即使随便挑一个出来 也能做的非常好~
基于可微分的方法进行优化
动态神经网络的工作
imageNet
大模型到底比小模型好在哪里?
总有一些不典型的照片~
正确预测出来 有点挑战, 增加几十层 增加作对这种异常模型的机率。
空间自适应
人眼不会在所有的像素上面花费同样的时间,
希望神经网络和人眼一样,不在背景上面花费太多时间
高效 稀疏的快速计算,其他地方通过快速插值来完成~
强化学习