Class 10 动态规划

递推

超级楼梯

小明上楼梯,一次只能上1层或者2层,请问上到第n层有多少种方案?
f(i)表示上第i层的方案数, f(1) = 1, f(2) = 2, f(3) = 3 …
f ( i ) = f ( i − 2 ) + f ( i − 1 ) f(i) = f(i - 2) + f(i - 1) f(i)=f(i2)+f(i1)

#include<bits/stdc++.h>
using namespace std; 

int main(){
	
	int n;
	int ans[200];
	scanf("%d", &n);
	ans[1] = 1;
	ans[2] = 2;
	for(int i = 3; i <= n; i++){
		ans[i] = ans[i - 1] + ans[i - 2];
	}
	
	printf("%d",ans[n]);
	return 0;
}

铺方格

有一个大小是2 × N 的网格,现在需要用2 种规格的骨牌铺满,骨牌规格分别是2 × 1 和2 × 2,请计算一共有多少种铺设的方法。设f(i) 表示铺满一个2 × i 网格的方案数。

在这里插入图片描述
从f(i - 1)跳过来,只有一种,而从f(i-2)跳过来有2种 2x2 或者 2个 2x1横着放

f ( i ) = 2 ∗ f ( i − 2 ) + f ( i − 1 ) f(i) = 2 * f(i - 2) + f(i - 1) f(i)=2f(i2)+f(i1)

#include<bits/stdc++.h>
using namespace std; 

int main(){
	
	int n;
	int ans[200];
	scanf("%d", &n);
	ans[1] = 1;
	ans[2] = 3;
	for(int i = 3; i <= n; i++){
		ans[i] = ans[i - 1] + 2 * ans[i - 2];
	}
	
	printf("%d",ans[n]);
	return 0;
}

染色问题

将一个圆盘分为 N ( 1 ≤ N ≤ 105 ) N (1 ≤ N ≤ 105) N(1N105)个扇形,每个扇形可涂红、黄、蓝三种颜色中的一种,但相邻两个扇形的颜色必须不同,问有多少种涂法。有了上面的经验,这道题变得比较简单,我们仍然用 f i f_i fi 表示符合条件的圆盘的染色数,如何递推?

对于第 i i i 个位置,要求和第 i − 1 i − 1 i1 个位置不同,那么第 i − 1 i − 1 i1 个位
置就有两种情况
情况一:第 i − 1 i − 1 i1 个位置和第一个位置的颜色不同
情况二:第 i − 1 i − 1 i1 个位置和第一个位置的颜色相同
f i = f i − 1 + 2 ∗ f i − 2 f_i = f_i−1 + 2 * f_i−2 fi=fi1+2fi2
初始值问题,应该初始化前三项。

斐波那契数列

我们要求斐波那契数列的第n 项,但是n 达到了1012 甚至更大的数字,要怎么解决呢?
考虑构造矩阵。

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std; 

const int mod = 1000000007;

struct Matrix{
	int a[3][3];
	Matrix(){
		memset(a, 0, sizeof(a));
	}
	Matrix operator*(const Matrix &b) const{
		Matrix res;
		for(int i = 1; i <= 2; i++){
			for(int j = 1; j <= 2; j++){
				for(int k = 1; k <= 2; k++){
					res.a[i][j] = (res.a[i][j] + a[i][k] * b.a[k][j]) % mod;
				}
			}
		}
		return res;
	}
}ans, base;

// 矩阵初始化 
void init(){
	base.a[1][2] = base.a[2][1] = base.a[2][2] = 1;
	ans.a[1][1] = ans.a[1][2] = 1;
}

// 快速幂 
void getPow(int b){
	while (b){
		if(b & 1) ans = ans * base;
		base = base * base;
		b >>= 1;
	}
}


int main(){
	init();
	getPow(4);
	cout<<ans.a[1][2]<<endl;  
	
	return 0;
}

子序列

最长上升子序列

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

f(i)代表第i个位置结尾的最长上升子序列长度

for(int i = 1; i <= n; i++){
	f[i] = 1;
	for(int j = 1; j < i; j++){
		if(a[j] < a[i]) 
			f[i] = max(f[j] + 1, f[i]); // 不是他自己最大,就是前面最大加上1
	}
}

合唱队形

NOIP 2014 提高组第一题

最长公共子序列

有两个数字序列,序列X 和序列Y, 求这两个序列的最长公共子序列。序列长度≤ 1000我们依然可以借鉴上面的做法,设f(i, j) 表示第一个序列的前i个数字,第二个序列的前j 个数字,能构成的最长公共子序列的长度,这样答案就应该是f(n, m)

考虑我们可以怎么得到 f ( i , j ) f(i, j) f(i,j)。首先
f ( i , j ) = m a x f ( i − 1 , j ) , f ( i , j − 1 ) f(i, j) = max{f(i − 1, j), f(i, j − 1)} f(i,j)=maxf(i1,j),f(i,j1)
也即第一个串的第i 个元素和第二个串的第j 个元素,只有一个可能被选择在这个公共子序列
中的长度。同时,也可能是两个元素都被选择在这个公共子序列中,但是这种方案和法当且仅当ai = bj, 在这样的前提下,
f ( i , j ) = m a x f ( i , j ) , f ( i − 1 , j − 1 ) + 1 f(i, j) = max{f(i, j), f(i − 1, j − 1) + 1} f(i,j)=maxf(i,j),f(i1,j1)+1

cin>>n>>m; 
for(int i=1; i<=n; ++i) cin >>a[i]; 
for(int i=1; i<=m; ++i) cin >>b[i]; 

f[0][0] = f[1][0] = f[0][1] = 0;
for(int i=1; i<=n; ++i){
	for(intj=1;j<=m;++j){
		f[i][j]=max(f[i-1][j],f[i][j-1]); 
		if(a[i]==b[j])
			f[i][j]=max(f[i][j],f[i-1][j-1]+1); 
	}
}
ans=f[n][m];

LCS与LIS的联系

最长公共子序列的nlogn的算法本质是将该问题转化成最长增序列(LIS),因为LIS可以用nlogn实现,所以求LCS的时间复杂度降低为nlogn。
假设有两个序列
s 1 [ 1 − 6 ] = a , b , c , a , d , c s1[1-6]={a,b,c,a,d,c} s1[16]=abcadc
s 2 [ 1 − 7 ] = c , a , b , e , d , a , b s2[1-7]={c,a,b,e,d,a,b} s2[17]=cabedab
记录51中每个元素在s2中出现的位置,再将位置按降序排列,则上面的例子可表示为:
loc(a)={6,2},loc(b)={7,3},loc(c)={1},loc(d)={5}。
将s1中每个元素的位置按s1中元素的顺序排列成一个序列
s 3 = 6 , 2 , 7 , 3 , 1 , 6 , 2 , 5 , 1 s3={6,2,7,3,1,6,2,5,1} s3=627316251
在对s3求LIS得到的值即为求LCS的答案。

背包

01背包

一个背包有V的空间,有n个物品,每个物品价值v[i],重量都不同w[i],求最大装载值
使用 f ( i , j ) f(i, j) f(i,j)表示表示考虑了前 i i i 个物品过后,花费的最大容量为 j j j,的最大装载值

要么选第i个、要么就不选
f ( i , j ) = m a x { f ( i − 1 , j ) , f ( i − 1 , j − w [ i ] ) + v [ i ] } f(i, j) = max\{f(i -1,j), f(i - 1, j - w[i]) + v[i]\} f(i,j)=max{f(i1,j),f(i1,jw[i])+v[i]}

// f[0][j]全是0, f[i][0]全是0

for(int i = 1; i <= n; i++){
	for(int j = 1; j <= V; j++){
		f[i][j] = f[i - 1][j]; // 至少也是前面一步的值
		if(j - w[i] >= 0)
			f[i][j] = max(f[i][j], f[i - 1][j - w[i]] + v[i]); 
			// 如果合适就更新,不合适大不了就用上一步的值
	}
}

分组背包

有n 种物品和一个容量为V 的背包。第i 种物品最多有ni 件可用,每件体积是vi,价值是ci。
求解一个价值的最大值满足将一些物品装入背包可使这些物品的费用总和不超过背包容量。

完全背包

有n 种物品和一个容量为V 的背包。每一种物品都有无限件,对于第i 种物品,每件体积是vi,价值是ci。求解一个价值的最大值满足将一些物品装入背包可使这些物品的费用总和不超过背包容量。

区间DP

模板

设F[i,j](1<=i<=j<=n)表示区间[i,j]内的数字相加的最小代价
每次用变量k(i<=k<=j-1)将区间分为[i,k]和[k+1,j]两段

for l:=2 to n do // 枚举区间长度
	for i:=1 to n do // 枚举区间的左端点
	begin
		j:=i+l-1; // 计算区间的右端点,因为区间长度和左端点循环嵌套枚举,保证了[i,j]内的所有子区间都被枚举到
		if j>n then break; // 保证了下标不越界
		for k:= i to j-1 do // 状态转移,去推 f[i,j]
			f[i,j]= max{f[i,k]+ f[k+1,j]+ w[i,j] }
	end; 
  • https://blog.csdn.net/ssllyf/article/details/85198297
  • https://www.jianshu.com/p/9c6401ea2f9b
  • https://blog.csdn.net/qq_40772692/article/details/80183248
  • https://www.cnblogs.com/mfrank/p/10533701.html

状压DP

树形DP

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值