深入解析 Qwen3-Embedding 和 Qwen3-Reranker:原理、应用与代码示例


深入解析 Qwen3-Embedding 和 Qwen3-Reranker:原理、应用与代码示例

在当今数字化信息爆炸的时代,高效的信息检索与处理技术成为了众多领域的关键需求。文本嵌入(Embedding)和重排序(Reranking)技术在语义搜索、推荐系统、检索增强生成(RAG)等应用中发挥着基础性作用。然而,现有的方法在实现多语言的高保真度和任务适应性方面面临诸多挑战,特别是在需要对多种语言进行细致语义理解的场景,或诸如代码检索和指令跟随等特定领域任务中,现有模型往往表现欠佳。此外,大多数开源模型缺乏规模和灵活性,而商业 API 则成本高昂且封闭。为应对这些挑战,阿里巴巴的 Qwen 团队推出了 Qwen3-Embedding 和 Qwen3-Reranker 系列模型,为多语言文本嵌入和相关性排序设立了新的标杆。

Qwen3-Embedding 技术解析

技术原理与架构

Qwen3-Embedding 是基于 Qwen3 基础模型训练的文本嵌入模型系列,采用了基于密集 Transformer 的架构,并专注于因果注意力机制以提升性能。其核心功能是将离散的、高维的符号(如文字)转化为低维、连续的数字向量(Vector),通过这种转化技术来捕捉不同数据点在嵌入空间中的距离远近,进而挖掘出它们之间隐藏的语义关系。

该模型接收单段文本作为输入,在处理过程中,利用模型最后一层的「EOS」标记对应的隐藏状态向量,将其作为输入文本的语义表示。例如,当输入 “苹果手机真好用” 和 “我有一部 iPhone” 这两句话时,Qwen3-Embedding 会将它们转化为数字向量。由于这两句话在语义上很接近,所以它们对应的向量也十分相似;而若输入 “今天天气不错”,与前两句表达的内容差别较大,其在向量空间中的位置就会与前两者距离更远。通过这种方式,AI 就能自动判断文本内容的相关性,为后续的搜索、推荐、聚类等任务提供有力支持。

训练过程详解

Qwen3-Embedding 的训练遵循多阶段训练范式,具体包括以下三个阶段:

  1. 大规模弱监督阶段:利用 Qwen3-32B 生成了 1.5 亿个合成训练对,这些训练对涵盖了多种语言和任务,包括检索、分类、语义文本相似度(STS)以及双文本挖掘等。此阶段通过大规模的弱监督数据进行对比学习预训练,让模型初步学习到文本之间的语义关系。
  2. 监督微调阶段:从众多数据中筛选出 1200 万个余弦相似度大于 0.7 的高质量数据对,使用这些数据对模型进行监督训练,以提高模型在实际应用场景中的准确性。这一步基于高质量标注数据进行,使得模型能够更好地适应具体任务需求。
  3. 模型融合阶段:采用球面线性插值(Slerp)的方法对多个微调后的检查点进行模型融合,确保模型的鲁棒性和泛化能力。通过这种融合策略,能够综合多个候选模型的优势,进一步提升模型的整体性能。

模型特色功能

  • 多语言支持:支持多达 119 种语言,涵盖了主流自然语言以及多种编程语言,具备强大的多语言、跨语言及代码检索能力。
  • 表征维度自定义:允许用户根据实际需求调整表征维度,开发者可以根据具体应用场景和资源限制,灵活地设置向量的维度,有效降低应用成本。
  • 指令适配优化:支持用户自定义指令模板,用户可根据不同的任务类型、语言特点或特定场景,定制输入指令。官方测试显示,使用自定义指令通常比不使用指令能提高 1% 到 5% 的性能。

示例代码

以下是一个使用 Qwen3-Embedding 模型生成文本嵌入向量的 Python 示例代码。假设我们使用的是 Hugging Face 的 transformers 库来加载和运行模型。

安装依赖
pip install transformers torch
示例代码
import torch
from transformers import AutoModel, AutoTokenizer

# 加载 Qwen3-Embedding 模型和分词器
model_name = "Qwen/Qwen3-Embedding"  # 替换为实际的模型名称
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# 输入文本
texts = [
    "苹果手机真好用",
    "我有一部 iPhone",
    "今天天气不错"
]

# 对输入文本进行分词并生成嵌入向量
embeddings = []
for text in texts:
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**inputs)
    # 获取最后一层的 [CLS] 标记对应的隐藏状态向量
    embedding = outputs.last_hidden_state[:, 0, :].detach().numpy()
    embeddings.append(embedding)

# 打印嵌入向量
for i, text in enumerate(texts):
    print(f"Text: {text}")
    print(f"Embedding: {embeddings[i]}")
    print("-" * 50)

Qwen3-Reranker 技术解析

技术原理与架构

Qwen3-Reranker 是专门用于提升搜索和推荐系统相关性排序能力的模型,与 Qwen3-Embedding 配套使用。它采用跨编码器(Cross-Encoder)架构,输入为文本对(例如用户查询与候选文档),通过深度语义分析来计算并输出两个文本的相关性得分,进而对初步检索结果进行精细排序,确保最相关的文档排在前面。

在实际应用中,当一个检索系统基于 Qwen3-Embedding 完成初步检索后,会得到一批与查询相关的候选文档。此时,Qwen3-Reranker 会对这些候选文档与查询进行精细化打分和排序。例如,在一个文档检索系统中,用户输入查询 “如何提高跑步速度”,Qwen3-Embedding 可能会初步检索出一批相关文档,但这些文档的相关性程度参差不齐。Qwen3-Reranker 会对每一个文档与查询组成的文本对进行分析,通过其跨编码器结构,深入理解查询与文档之间的语义关系,然后给出一个相关性得分。最终,系统根据这个得分重新排序,将最相关的文档优先展示给用户。

训练过程

在 Reranker 模型的训练中,基于实验验证结果,直接采用高质量标注数据进行监督训练。这种方式能够有针对性地提升模型在排序任务上的性能,相比于一些需要大量无监督或弱监督数据预训练的方法,大大提升了训练效率。通过对高质量标注数据的学习,模型能够更好地捕捉查询与文档之间的相关性特征,从而在实际应用中给出更准确的排序结果。

模型优势

  • 高精度排序:通过深度语义分析,Qwen3-Reranker 能够捕捉查询和文档间的细微相关性。与传统的排序方法相比,它不仅仅依赖于关键词匹配,而是从语义层面深入理解文本对之间的关系,显著提升了排序质量。
  • 高效推理:经过优化的推理速度,结合阿里云 DashVector 服务,能够实现低延迟、高吞吐量。这使得在大规模的信息检索应用中,能够快速响应用户的查询请求,为用户提供流畅的检索体验。
  • 用户自定义:同样支持自定义指令,开发者可以根据不同的任务需求和应用场景,灵活调整输入格式,从而提升排序效果。

示例代码

以下是一个使用 Qwen3-Reranker 模型对文本对进行相关性打分的 Python 示例代码。

示例代码
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载 Qwen3-Reranker 模型和分词器
model_name = "Qwen/Qwen3-Reranker"  # 替换为实际的模型名称
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# 输入文本对
query = "如何提高跑步速度"
documents = [
    "提高跑步速度需要坚持训练。",
    "跑步速度的提升与饮食无关。",
    "天气对跑步速度有影响。"
]

# 对每个文本对进行相关性打分
for doc in documents:
    # 构造输入文本对
    input_text = f"{query} [SEP] {doc}"
    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
    
    # 获取模型输出
    outputs = model(**inputs)
    logits = outputs.logits
    score = torch.nn.functional.softmax(logits, dim=1)[:, 1].item()  # 获取相关性得分
    
    print(f"Query: {query}")
    print(f"Document: {doc}")
    print(f"Relevance Score: {score:.4f}")
    print("-" * 50)

Qwen3-Embedding 和 Qwen3-Reranker 的协同应用

在实际应用中,Qwen3-Embedding 和 Qwen3-Reranker 常常结合使用,构建出一套完整的语义检索流程,显著提升搜索、推荐等系统的准确性。以检索增强生成(RAG)系统为例,Embedding 模型和 Reranker 模型共同构建了检索部分的骨干框架。首先,Qwen3-Embedding 模型将用户的查询以及文档库中的文档都转化为向量表示,通过计算向量之间的相似度,进行初步检索,从大规模的文档库中筛选出一批可能相关的候选文档。然后,Qwen3-Reranker 模型对这些候选文档与查询组成的文本对进行精细化打分和排序,从语义层面深入分析它们之间的相关性,将最相关的文档筛选出来提供给后续的生成模型或直接展示给用户。

在电商推荐系统中,Qwen3-Embedding 可以根据用户的历史浏览行为、购买记录等生成用户向量,同时将商品信息转化为商品向量,通过向量相似度进行初步的商品推荐。然后,Qwen3-Reranker 根据用户当前的查询或浏览情境,对初步推荐的商品进行相关性排序,优先展示最符合用户当前需求的商品,从而提升用户体验和转化率。

性能表现与对比

Qwen3-Embedding 和 Qwen3-Reranker 在多个多语言基准测试中展现出了强大的性能:

  • 在 MMTEB(涵盖 250 多种语言的 216 个任务)测试中,Qwen3-Embedding-8B 取得了 70.58 的平均任务得分,超越了 Gemini 和 GTE-Qwen 2 系列等模型。
  • 在 MTEB(英语 v2)测试中,Qwen3-Embedding-8B 达到了 75.22 的分数,优于其他开源模型,如 NV-Embed-V2 和 Grit LM-7B 等。
  • 在 MTEB-Code 测试中,Qwen3-Embedding-8B 以 80.68 的分数领先,在代码检索和 Stack Overflow 问答等应用中表现出色。
  • Qwen3-Reranker-0.6B 已经超越了 Jina 和 BGE 重排器。
  • Qwen3-Reranker-8B 在 MTEB-Code 测试中获得 81.22 的分数,在 MMTEB-R 测试中获得 72.94 的分数,达到了当前最先进的性能水平。

通过对比实验和消融研究发现,Qwen3-Embedding 和 Qwen3-Reranker 的训练过程中的各个阶段都至关重要。例如,在 Qwen3-Embedding 的训练中,如果跳过合成预训练或模型融合阶段,会导致性能显著下降(在 MMTEB 测试中最多下降 6 分),这充分证明了其全面训练方法的有效性。与其他类似模型如 BGE(智源)、Sentence-BERT 等相比,Qwen3-Embedding-8B 在 MTEB 多语言排行榜上得分 70.58,领先于 BGE 等模型,Reranker 模型在多语言检索任务中也表现优异。此外,阿里还开源了 GTE 系列模型(如 gte-multilingual-reranker-base),该系列采用更轻量的 ModernBERT 架构,支持 70 + 语言,推理速度提升 10 倍,但由于参数规模较小,性能稍逊于 Qwen3 系列。

总结与展望

阿里巴巴的 Qwen3-Embedding 和 Qwen3-Reranker 系列模型为多语言信息检索领域带来了重大突破。通过强大的技术架构、精心设计的训练过程以及卓越的性能表现,它们为开发者和研究人员提供了构建更有效的语义检索和 RAG 应用的有力工具。其开源特性也使得更多的人能够基于这些模型进行创新和拓展,推动整个机器学习社区的发展。

随着对语言理解和信息检索需求的不断增长,相信 Qwen3 系列模型将在更多的领域得到应用和优化,为用户提供更加智能、高效的信息服务。同时,Qwen 团队也在持续探索和优化,计划通过对 Qwen 基础模型的不断改进,提升文本嵌入和重排序模型的训练效率,进一步改善在各种场景下的部署性能。此外,还将致力于扩展多模态表示系统,建立跨模态语义理解能力,为未来的人工智能应用开辟更广阔的空间。


希望这篇文章对你有所帮助!如果你还有其他问题或需要进一步的解释,欢迎随时提问。

### Qwen3-8B Modeling_Qwen.py 文件解析 Qwen3-8B 是通义千问系列的一个变体版本,其核心功能基于 `modeling_qwen.py` 实现。以下是关于此模型的相关代码实现及其使用方法的详细介绍。 #### 1. **Model Definition** 在 `modeling_qwen.py` 文件中,通常会定义一个继承自 `PreTrainedModel` 的类来封装 Qwen3-8B 模型的核心逻辑。此类的主要组成部分包括: - **Language Model**: 定义语言建模部分,负责处理输入文本并生成相应的上下文表示。 - **Vision Model (可选)**: 如果涉及到多模态任务,则会有视觉模块用于图像特征提取[^2]。 - **Alignment Layer**: 对齐层用于连接视觉语言两种不同类型的嵌入向量,确保两者能够有效融合[^2]。 ```python from transformers import PreTrainedModel class QwenForCausalLM(PreTrainedModel): def __init__(self, config): super().__init__(config) # Language model initialization self.language_model = ... # Placeholder for language model # Vision model and alignment layer (if applicable) if hasattr(config, 'use_vision'): self.vision_model = ... self.alignment_layer = ... def forward(self, input_ids=None, pixel_values=None, attention_mask=None, labels=None, **kwargs): """ Forward pass of the model. Args: input_ids: Tokenized text inputs. pixel_values: Pixel values from images (for multi-modal tasks). attention_mask: Attention mask to avoid attending to padding tokens. labels: Ground truth labels for training purposes. Returns: loss or logits depending on whether labels are provided. """ # Process textual embeddings lang_output = self.language_model(input_ids=input_ids, attention_mask=attention_mask) if pixel_values is not None: vision_features = self.vision_model(pixel_values=pixel_values) aligned_features = self.alignment_layer(vision_features) combined_embedding = torch.cat([lang_output.last_hidden_state, aligned_features], dim=-1) final_output = self.language_model(inputs_embeds=combined_embedding) else: final_output = lang_output return final_output.logits if labels is None else self.compute_loss(final_output, labels) ``` #### 2. **Usage Example** 以下是一个简单的 Python 脚本示例,展示如何加载预训练好的 Qwen3-8B 并执行推理操作。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen3-8B") model = AutoModelForCausalLM.from_pretrained("qwen/Qwen3-8B") # Input prompt prompt = "Explain quantum computing in simple terms." # Encode input into token IDs inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to('cuda' if torch.cuda.is_available() else 'cpu') with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0])) ``` #### 3. **Docker Integration Reference** 对于希望部署 Qwen3-8B 到 Docker 环境下的用户,可以参考以下配置方式。具体环境变量设置已在引用材料中提及[^1]。 ```bash export IMAGE_NAME=qwenllm/qwen export QWEN_CHECKPOINT_PATH=/data/qwen/Qwen-14B-Chat export PORT=8000 export CONTAINER_NAME=qwen_container docker run --name ${CONTAINER_NAME} \ -p ${PORT}:${PORT} \ -v ${QWEN_CHECKPOINT_PATH}:/models \ ${IMAGE_NAME} ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从零开始学习人工智能

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值