01背包
dp[j]=max(dp[j],dp[j-w]+c) j由maxsize到 0
为啥要倒着来?
如果用0到max
如 2 3 1 2 3 4 2 2 (w c) 4个
背包大小4
在 i=1 有 0 0 3 3 3
在i=2 有 0 2 3 5 7(dp[4-1] =dp [3] 但这个dp[3]不是上一次的状态,造成了错误的状态叠加)
完全背包
dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]+c[i]) j由0到maxsize
优化dp[j]=max(dp[ j ],dp[ j-w[ i ] ]+c[ i ])
这tm为毛又可以顺着?
物品无限啊,拿同一个物品要有这种叠加态啊 01背包要避免这种叠加态
但是多重背包要使用这种叠加态啊
比如设个物品x (weigh 3,cost 5)
dp[3]为拿一次 存起来 然后dp[6]拿x第二次 由dp[3]递推而来
多重 :
填坑来了
首先 朴素的方程为 dp[i][j]=max(dp[i-1][j],dp[i][j-k*c[i]]+k*w[i])
然后 滚动数组拍扁dp[j]=max(dp[j],[j-k*c[i]]+k*w[i]) 0到maxsize 同一物品取多次所以顺序
然后 二进制优化 其实就是类似与快速幂
就是先把 x种物品拆分为x个01背包
现在每个01背包里面的物品重量,价值都是一样的
魔改一下重量和价值 搞成二进制的形态 比如32 拆为 1 2 4 8 16 1
这样 01背包的运算由32次变为 6次 大大滴减少辣
struct substance
{
int weight,value,num;
}s[maxn];
int dp[maxn];
for(int i=1;i<=maxn;i++)
{
int base=1;
int temp=s[i].num;
for(base;base<=temp;(base<<1))
{
for(int j=bag_size;j>=base*s[i].weight;j--)
{
dp[j]=max(dp[j],dp[j-base*s[i].weight]+base*s[i].value);
}
temp-=base;
}
for(int j=bag_size;j>=temp*s[i].weight;j--)
{
dp[j]=max(dp[j],dp[j-s[i].weight]+s[i].value);
}
}