任务说明
- 论文分类(数据建模任务),利用已有数据建模,对新论文进行类别分类;
- 使用论文标题完成类别分类;
- 学会文本分类的基本方法、
TF-IDF
等;
数据处理步骤
在原始arxiv论文中论文都有对应的类别,而论文类别是作者填写的。在本次任务中我们可以借助论文的标题和摘要完成:
- 对论文标题和摘要进行处理;
- 对论文类别进行处理;
- 构建文本分类模型;
文本分类思路
- 思路1:TF-IDF+机器学习分类器
直接使用TF-IDF对文本提取特征,使用分类器进行分类,分类器的选择上可以使用SVM、LR、XGboost等
- 思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建分类器
- 思路3:WordVec+深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRnn或者BiLSTM。
- 思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。
(涉及深度学习还得后面补,日渐沦为没有感情的搬运工。。。。)
具体代码实现以及讲解
首先完成字段读取:
# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
'report-no', 'categories', 'license', 'abstract', 'versions',
'update_date', 'authors_parsed'], count=None):
'''
定义读取文件的函数
path: 文件路径
columns: 需要选择的列
count: 读取行数
'''
data = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
if idx == count:
break
d = json.loads(line)
d = {
col : d[col] for col in columns}
data.append(d)
data = pd.DataFrame(data)
return data
data = readArxivFile('arxiv-metadata-oai-snapshot.json',
['id', 'title'