论文笔记45:Model-Guided Deep Hyperspectral Image Super-resolution

Model-Guided Deep Hyperspectral Image Super-resolution

方法

相关工作:深度学习方法:

  • Multispectral and hyperspectral image fusion using a 3-D-Convolutional neural network
  • Multispectral and hyperspectral image fusion by MS/HS fusion net
  • Deep blind hyperspectral image fusion

基于模型的HSI超分辨率算法

观测图像与原始HR-HSI之间的线性关系可以写成
在这里插入图片描述
Z Z Z为HR-HSI, X X X为LR-HSI, Y Y Y为HR-MSI, H H H为空间降采样矩阵,由模糊算子和子采样算子组成, P P P为光谱降采样矩阵。

HSISR的目标函数可以表述为在这里插入图片描述
其中 J ( Z ) J(Z) J(Z)为正则化项,我们建议通过从一组训练HSI隐式学习的正则化来规范化这个反问题。我们使用有效的近端梯度下降(PGD)算法求解方程(2),令 F ( Z ) = f ( Z ) + J ( Z ) F(Z)=f(Z)+J(Z) F(Z)=f(Z)+J(Z),其中 f ( Z ) f(Z) f(Z) J ( Z ) J(Z) J(Z)分别表示可微部分和不可微部分。作为梯度下降法的推广,PGD算法通过迭代计算最小化函数 F ( Z ) F(Z) F(Z)
在这里插入图片描述
其中Prox表示与非平滑项 J ( Z ) J(Z) J(Z)相关的近端算子, λ λ λ是步长。当 f ( Z ) f(Z) f(Z)是Lipschitz连续时,步长 λ λ λ可以设置为 λ = 1 / L λ=1/L λ=1/L,其中 L L L ∇ Z f ∇_Zf Zf的Lipschitz常数。如果 L L L是未知的,步长 λ = λ ( t ) λ=λ^{(t)} λ=λ(t)也可以通过线(line)搜索方法在每次迭代中自适应地设置。在等式(3)的每次迭代中,我们首先通过梯度下降来最小化可微部分 f ( Z ) f(Z) f(Z),然后是近端操作。函数 J ( Z ) J(Z) J(Z) Prox λ J ( ⋅ ) \text{Prox}_{λJ}(·) ProxλJ()算子可以定义为
在这里插入图片描述
Prox λ J ( ⋅ ) \text{Prox}_{λJ}(·) ProxλJ()算子可以通过应用于噪声观测 V V V的高斯去噪算法来实现。与正则化器 J ( Z ) J(Z) J(Z)相关联的高斯去噪器 g ( ⋅ ) g(·) g()可以是可以以闭合形式(closed-form)显式表示的传统的基于模型的去噪器,或者是由DCN训练程序获得的更复杂的基于学习的去噪器。

将PGD算法应用于等式(2)的目标函数, f ( Z ) f(Z) f(Z)对应于前两个保真度项在这里插入图片描述
f ( Z ) f(Z) f(Z)的梯度可以很容易地计算为
在这里插入图片描述
在每次迭代中,我们首先计算原始HR HSI的中间估计 V ( t ) V^{(t)} V(t)
在这里插入图片描述
然后是应用于 V ( t ) V^{(t)} V(t)的近端算子 Prox λ J ( ⋅ ) \text{Prox}_{λJ}(·) ProxλJ()
在这里插入图片描述
用于求解方程(2)的HSISR问题的迭代算法在算法1中给出,其中使用 X X X双三次插值版本初始化 Z ( 0 ) Z^{(0)} Z(0)。在基于模型的HSISR框架下,PGD算法通常需要数十次迭代才能收敛。在算法1中,任何现有的HSI去噪器 g ( ⋅ ) g(·) g()都可以用来计算 Z ( t + 1 ) Z^{(t+1)} Z(t+1)。由于DCN对自然图像具有出色的去噪能力,我们建议使用DCN去噪器来近似近端算子。具体而言,采用可以利用HSI的多尺度依赖性的类U-Net的DCN。在模型引导展开之后,使用基于DCN的去噪器也有助于整个网络的端到端训练。
在这里插入图片描述

模型引导的DCNN

与其他基于模型的图像恢复方法一样,正则化参数 λ λ λ和函数 g ( Z ) g(Z) g(Z)很难联合优化。模型引导深度卷积网络(MoG-DCN)的整体网络架构如图所示,它执行算法1 T T T次迭代。
在这里插入图片描述
重建模块的设计对应于如等式(7)(微分项)中所述的中间结果 V ( t ) V^{(t)} V(t)的计算,如右图所示,由 Z ( t ) Z^{(t)} Z(t)计算 V ( t ) V^{(t)} V(t),使用卷积或反卷积获得 H H H H T H^T HT P P P P T P^T PT. DCN去噪模块的设计对应于如等式(8)(非微分项)中所述的更新的估计 Z ( t + 1 ) Z^{(t+1)} Z(t+1)的计算(由 V ( t ) V^{(t)} V(t)计算 Z ( t + 1 ) Z^{(t+1)} Z(t+1))。为简单起见,我们采用U-Net作为HSI去噪的骨干网络架构。还可以采用其他更有效的HSI去噪网络。T个DCN去噪模块的参数共享不会降低重建性能,添加密集连接:拼接(Concat)+1×1卷积。损失函数为
在这里插入图片描述
在这里插入图片描述

实验

实验设置:
数据集:CAVE(32个512×512室内场景)和Harvard(50个真实世界室内和室外场景),31个波段,对于CAVE数据集,我们使用前20个HSI进行训练,最后12个HSI进行测试;对于Harvard数据集,我们使用前30个HSI进行训练,最后20个HSI进行测试。为了训练所提出的网络,分别从LR-HSIS X i X_i Xi和HR-RGB图像 Y i Y_i Yi中提取大小为12×12×31和96×96×3的图像块。

代码实现

主页:https://see.xidian.edu.cn/faculty/wsdong/Projects/MoG-DCN.htm

使用:下载数据集,放到对应训练和测试文件夹
运行creat_pathlist.py生成txt文件
通过clean_dataset.py改变数据读取方法
运行./sf_8_CAVE/train.py来训练
运行./sf_8_CAVE/tst.py来测试

训练:有空去服务器跑一下~~下次一定
测试:

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值