论文笔记25:Zero-Shot Hyperspectral Image Denoising With Separable Image Prior

引言

相似文章:
Self-supervised Hyperspectral Image Restoration using Separable Image Prior
DNN-based Hyperspectral Image Denoising with Spatio-spectral Pre-training

基于图像先验的优化方法已成为HSI重建的主流之一。尽管深度学习被集成到图像恢复任务中,但高性能仅限于灰度/彩色图像的应用。这是因为收集用于监督训练的HSI所需的大数据集极其困难,因为需要特殊的HSI传感器,并且捕获HSI通常需要很多时间和精力。

DnCNN使用17-20层,每层有64个滤波器核来训练去噪网络以处理彩色图像。因此,基于DnCNN设置,最好在每个层中使用64×N/3个滤波器来捕获具有N个光谱波段的HSI的光谱信息。因此,参数数量的任何增加都难以训练网络。在这里插入图片描述

方法

对于像HSI这样具有许多通道的图像立方体来说,通常很难训练它,因为我们可能需要每层更多的核来捕捉光谱方向上的特征。这将使其优化非常困难。

考虑到HSIs的特性,我们可以安全地忽略空间光谱平面中的对角相关性,因为对角方向上的相邻像素携带的信息较少,这表明了使用可分离网络的优势。
在这里插入图片描述
空间维度的卷积在每个通道中独立执行(深度方向的卷积),而通道方向的卷积使用1D核来执行(点方向的卷积)。

线性算子 A ∈ { 0 , 1 } N × N A\in\{0,1\}^{N\times N} A{0,1}N×N为一个已知的随机采样矩阵,其中 N N N是一个HSI中的总像素数。仅给定对应于 A A A的采样点的像素,我们考虑恢复整个图像 x x x的问题。

我们通过仅最小化被 A A A屏蔽的那些像素的均方误差来训练网络 min ⁡ Φ ∥ A x − A Φ ( A x ) ∥ 2 2 ( 1 ) \min _{\Phi}\|\mathbf{A} \mathbf{x}-\mathbf{A} \Phi(\mathbf{A} \mathbf{x})\|_{2}^{2}\quad(1) ΦminAxAΦ(Ax)22(1)

其中 A x Ax Ax为一组测量(measured)的像素, Φ \Phi Φ为神经网络,该任务的目的是估计原始图像 x x x.

我们通过最小化(1)来训练两个网络。其中之一是具有紧密耦合(coupled)系数的不可分离CNN。它有8层,每层有3×3×M×L参数,其中M、L分别是卷积输入和输出的通道长度。另一个是可分离的CNN,它也有8层,每层有3×3×1×M个深度方向卷积参数和1×1×M×L个点方向卷积参数。在实验中,我们将一个HSI分成20×20×{波段数}的小块(blocks),并将其作为输入。训练是通过仔细调整超参数以获得最佳性能来进行的。使用(1)进行的训练与DIP的不同之处在于,我们按原样使用图像,而DIP从随机样本开始生成清晰的图像。

下图显示了一个填洞(hole-filling)任务的例子。图(a)和(b)分别显示了原始图像和观察结果。图(c)和(d)分别显示了不可分离和可分离的CNN的结果。这两种网络都是利用神经网络的平滑能力对空洞进行插值,即使代价只在由 A A A表示的采样点上进行评估。需要注意的是,即使可分离CNN层数相同,参数较少,性能也优于不可分离CNN。
在这里插入图片描述
可分离卷积捕获了一个HSI的潜在低秩结构。我们假设能够从观测值y中恢复清晰图像x的网络也具有从y+n中恢复y的能力。我们首先估计噪声图像y中噪声的标准偏差 σ ′ \sigma' σ,并进一步将 σ ~ = ( 1 + α ) σ ′ ( α < < 1 ) \tilde{σ}=(1+α)\sigma'(α< < 1) σ~=(1+α)σ(α<<1)添加到y中 y ~ = y + n ~ \tilde{\mathbf{y}}=\mathbf{y}+\tilde{\mathbf{n}} y~=y+n~

其中 n ~ ∼ N ( 0 , σ ~ 2 ) \tilde{\mathbf{n}} \sim \mathcal{N}\left(0, \tilde{\sigma}^{2}\right) n~N(0,σ~2),考虑到估计误差,我们在 [ − 0.1 , 0.1 ] [-0.1,0.1] [0.1,0.1]范围内随机采样 α α α值,并在训练步骤中创建训练集 { y ′ , y } \{\mathbf{y}',\mathbf{y}\} {y,y}. 损失函数为 min ⁡ Φ ∥ Φ ( y ~ ) − y ∥ 2 2 \min _{\Phi}\|\Phi(\tilde{\mathbf{y}})-\mathbf{y}\|_{2}^{2} ΦminΦ(y~)y22

其中 Φ \Phi Φ是可分离的CNN,这种策略有效地训练了网络并产生了足够的性能,但是我们通过每隔几百个epochs用恢复的图像替换输入图像y来进一步增强性能。

实验

我们在网络中使用了4个可分离的层。每层有100个(M=100)深度方向的核,大小为3×3×1,400个(L=400)点方向的核,大小为1×1×100,BN和ReLU。为了训练,通过旋转和翻转输入数据来扩充数据,然后将其分成20×20×{波段数}的小块。minibatch的大小为32,并且使用Adam优化器来训练网络。学习率从0.01开始,每几十个epochs学习率减半。

我们添加了标准差为 σ = [ 0.05 , 0.1 , 0.15 , 0.2 , 0.25 ] σ = [ 0.05,0.1,0.15,0.2,0.25] σ=[0.05,0.1,0.15,0.2,0.25]的高斯噪声,对比BM4D、FastHyDe、DIP、N2V. 表1列出了一些图像的平均PSNR值。

代码

https://github.com/separable-image-prior/self-supervised-hyperspectral-image-restoration

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值