siyumiao_hbu的博客

私信 关注
多光谱图像融合
码龄1年
  • 8,507
    被访问量
  • 21
    原创文章
  • 274,579
    作者排名
  • 35
    粉丝数量
  • 于 2019-10-04 加入CSDN
获得成就
  • 获得9次点赞
  • 内容获得10次评论
  • 获得70次收藏
荣誉勋章
兴趣领域
  • #后端
    #Python
TA的专栏
  • 论文笔记
    14篇
  • matlab
    3篇
  • 数据集
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

批量裁剪高光谱图片使其大小可以被32整除存储裁剪后的图片图片名与原图片相同

批量裁剪高光谱图片,使其大小可以被32整除,存储裁剪后的图片,图片名与原图片相同。clearclcpathstr1 = fileparts('.\icvl'); %当前路径dirname1 = fullfile(pathstr1, 'icvl','*.mat'); imglist1 = dir(dirname1);sf=32; %scale factorTest_file={'icvl'}; %原图像数据集Result_dir ='crop'; %裁剪图像存放位置Out_dir=f
原创
25阅读
0评论
0点赞
发布博客于 2 月前

和波段数相关,比如CAVE数据集512*512*31,图片大小为512*512,波段数为31

也有其他格式的,可以相互转换

回答的问题 #为什么网上的高光谱数据集都是.mat格式
回答了问题于 2 月前

卷积神经网络膨胀卷积

卷积神经网络中的卷积核卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核,又称滤波器。卷积核的大小一般有1x1,3x3和5x5的尺寸(一般是奇数x奇数)。同样提取某个特征,经过不同卷积核卷积后效果也不一样。可以发现同样是锐化,5x5的卷积核要比3x3的卷积核效果细腻不少。CNN的卷积核通道数=卷积输入层的通道数CNN的卷积输出层通道数(深度)=卷积核的个数在卷积层的计算中,假设输入是Hx W .
原创
28阅读
0评论
0点赞
发布博客于 2 月前

用于多聚焦图像融合的全局特征编码GEU网论文笔记

与传统方法相比,基于卷积神经网络的多聚焦图像融合方法从源图像中学习聚焦图,大大提高了融合性能。然而,这些方法尚未达到令人满意的融合结果,因为卷积运算过于关注局部区域、将生成聚焦图作为局部分类(将每个像素分类为聚焦或非聚集类别)问题。 提出了一种用于多聚焦图像融合的全局特征编码的GEU网络。在所提出的全局优化网络中,使用了U-Net网络将聚焦图的生成作为一个全局两类分割任务,从全局角度分割聚焦和散焦区域。为了提高U-Net的全局特征编码能力,引入了全局特征金字塔提取模块(GFPE)和全局注意连接上采样模块..
原创
56阅读
0评论
0点赞
发布博客于 2 月前

多光谱图像评价指标含psnr,rmse, ergas, sam, uiqi,ssim,DD,CCS

含psnr,rmse, ergas, sam, uiqi,ssim,DD,CCS,matlab版图片评估指标,适用与高光谱图像,多波段图像 Computes a number of quality indices from the remote sensing literature, namely the RMSE, ERGAS, SAM and UIQI indices. ground_truth - the original image (3D image),
zip
发布资源于 3 月前

CAVEdata.rar

CAVE数据集mat格式,含HSI,MSI,GT。我们提供了用于模拟GAP相机的多光谱图像数据库。这些图像包含各种现实世界的材料和物体。
rar
发布资源于 3 月前

matlab图像归一化方法

B为二维矩阵,大小为16*16一、max-min归一化:Bmax=max(max(B));Bmin=min(min(B)); for a=1:16 for b=1:16 B(a,b)=(B(a,b)-Bmin)/(Bmax-Bmin); end end二、B=B/255B=B/65535三、B=im2double(B)%把图像转换成double精度类型(0~1)...
原创
277阅读
0评论
0点赞
发布博客于 3 月前

用matlab实现图片下采样(mat矩阵分块求平均再重组)

将256*256大小的图片以factor32下采样得到16*16的大小(256*256矩阵分成32*32的矩阵,在每个块上求平均值,所得平均值重新组成新的16*16矩阵)A=imgB=zeros(16,16); for i=1:16 for j=1:16 subA=A((1+32*(i-1):i*32),(1+32*(j-1):j*32)); B(i,j)=mean(subA(:)); end endimshow
原创
127阅读
0评论
0点赞
发布博客于 3 月前

图像融合数据集

图像数据集网站CVonline:图像数据库YACVIDTNO Image Fusion Dataset多聚焦图像http://www.pxleyes.com/photography-contest/19726https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-datasethttp://dsp.etfbl.net/mif/https://github.com/sametaymaz/Multi-focus-
原创
300阅读
1评论
2点赞
发布博客于 3 月前

高光谱数据集,论文笔记,多光谱图像融合、泛锐化代码汇总

数据集:https://blog.csdn.net/siyumiao_hbu/article/details/109291055论文笔记:高光谱图像超分辨率空间谱先验学习Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral ImageryGDD无监督图像对融合Guided Deep Decoder: Unsupervised Image Pair Fusion用于半盲高光谱和多光谱图像融合的非局部稀疏张..
原创
527阅读
2评论
2点赞
发布博客于 4 月前

基于CNN的Landsat 8全色与多光谱图像融合的泛锐化方法

基于CNN的Landsat 8全色与多光谱图像融合的泛锐化方法摘要为了解决影响传统方法的光谱和空间失真问题,提出了一种基于卷积神经网络结构的泛锐化方法,将低空间分辨率的多光谱图像进行升级,并与高空间分辨率的全色图像进行融合,生成一幅新的高空间分辨率的多光谱图像。该方法基于有线电视网络体系结构的金字塔结构,具有较高的学习能力,能够为建设任务生成更具代表性和鲁棒性的层次特征。此外,通过叠加多个线性滤波层可以有效模拟高度非线性的融合过程,适用于学习高空间分辨率全色图像和低空间分辨率多光谱图像之间的复杂..
原创
274阅读
0评论
1点赞
发布博客于 4 月前

基于自适应响应函数学习的耦合卷积神经网络在高光谱超分辨中的应用 论文笔记

Coupled Convolutional Neural Network With Adaptive Response Function Learning for Unsupervised Hyperspectral Super ResolutionHyCoNet由三个耦合的自动编码器网络组成,其中HSI和MSI基于线性分解模型解混成端元和丰度。设计了两个特殊的卷积层作为与三个自编码网络协调的桥梁,在训练过程中自适应地学习两个卷积层的PSF和SRF参数。此外,在联合损失函数的驱动下,该方法简单明了,
原创
42阅读
0评论
0点赞
发布博客于 4 月前

多光谱高光谱数据集

两个图像数据集网站http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htmCVonline:图像数据库http://yacvid.hayko.at/YACVID自然场景的高光谱图像 - 2002(David H. Foster)自然场景的高光谱图像 - 2004(David H. Foster)ICVL五个多光谱成像数据集用于语义分割的高分辨率多光谱数据集...
原创
405阅读
0评论
1点赞
发布博客于 4 月前

多光谱图像CAVE数据集

我们提供了用于模拟GAP相机的多光谱图像数据库。这些图像包含各种现实世界的材料和物体。我们正在将该数据库提供给研究社区。
zip
发布资源于 5 月前

高光谱图像超分辨率空间谱先验学习

Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery
原创
243阅读
0评论
0点赞
发布博客于 5 月前

GDD无监督图像对融合 论文笔记

Guided Deep Decoder: Unsupervised Image Pair Fusion摘要:提出了一个有指导的深度编码器网络作为一般先验。所提出的网络由两部分组成:1、利用引导图像的多尺度特征的编码器-解码器网络。2、产生输出图像的深度解码器网络组成。这两个网络由特征细化单元连接,以将引导图像的多尺度特征嵌入到深度解码器网络中。所提出的网络允许在没有训练数据的情况下以无监督的方式优化网络参数。符号表示:低分辨率或有噪声的输入图像、guidance图像C W和H分别表示通道数.
原创
96阅读
0评论
0点赞
发布博客于 5 月前

高光谱和多光谱数据融合的比较[综述]2017 论文笔记

近年来,人们在设计图像处理算法以提高高光谱图像的空间分辨率方面做了大量的工作。HS数据与高空间分辨率多光谱(MS)数据的融合是最常见的问题之一。基于不同的理论,人们提出了不同的数据融合方法,包括分量替代(CS)、多分辨率分析(MRA)、光谱分离和贝叶斯概率。本文通过大量的实验对那些HS-MS融合技术进行了比较综述。通过定量和可视化评估10种最先进的HS-MS融合方法的融合性能,对其进行了比较。实验中使用了8个具有不同地理和传感器特征的数据集来评估融合算法的通用性和通用性。为了最大化这种比较的公平性和透明..
原创
277阅读
1评论
0点赞
发布博客于 4 月前

具有结构张量表示的无监督深度图像融合 论文笔记

Unsupervised Deep Image Fusion With Structure Tensor Representations具有结构张量表示的无监督深度图像融合来源:IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020作者:Hyungjoo Jung, Youngjung Kim , Hyunsung Jang, Namkoo Ha, and Kwanghoon Sohn...
原创
196阅读
3评论
0点赞
发布博客于 8 月前

一用于半盲高光谱和多光谱图像融合的非局部稀疏张量分解 论文笔记

Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion一用于半盲高光谱和多光谱图像融合的非局部稀疏张量分解Renwei Dian , Student Member, IEEE, Shutao Li , Fellow, IEEE, Leyuan Fang , Senior Member, IEEE, Ting Lu , Member, IEEE, and José
原创
225阅读
0评论
0点赞
发布博客于 8 月前

基于元分析思想的遥感图像泛锐化方法综述:实践探讨与挑战 论文笔记

题目:Review of the Pansharpening Methods for Remote Sensing Images Based on the Idea of Meta-analysis: Practical Discussion and Challenges 基于元分析思想的遥感图像泛锐化方法综述:实践探讨与挑战作者:Xiangchao Meng , Huanfeng ...
原创
83阅读
0评论
1点赞
发布博客于 4 月前

DDcGAN:一种用于多分辨率图像融合的双鉴别器条件生成对抗网络 论文笔记

DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion​​​​​​DDcGAN:一种用于多分辨率图像融合的双鉴别器条件生成对抗网络提出了一种新的端到端模型,称为双鉴别器条件生成对抗性网络(DDcGAN),用于融合不同分辨率的红外和可见光图像。摘要我们的方法建立了一个生成器和两个鉴别器之间的对抗性游戏。 生成器的目的是生成一个真实的..
原创
712阅读
3评论
2点赞
发布博客于 8 月前

图像超分辨率深度学习 (综述 )论文笔记

题目:Deep Learning for Image Super-Resolution 期刊:Neurocomputing年份:2019作者:Wenming Yang, Fei Zhou, Rui Zhu, Kazuhiro Fukui, Guijin Wang, Jing-Hao Xue 摘要:图像超分辨率(SR)的目标是从低分辨率(LR)输入图像或视频序列中恢复视觉上效果更好的高分辨率(HR)图像。 图片SR已经被证明是非常重要的 ,在视频监控、超高清晰度电视、低分辨率人脸识别和遥感成像
原创
960阅读
0评论
0点赞
发布博客于 9 月前

机器学习中文资料合集 [转载自机器之心]

https://mp.weixin.qq.com/s?src=11&timestamp=1589111646&ver=2330&signature=XVN3Si5Z*dkdK-6yphjJlgIpK-c4kNJUOqj7KXh-ZjcBYCeKwJzASKMwW1N20QA1MdESRGlM8df-DB-QmgqEVw78ag*-aVAGctgro6qDpsvGoKfOALGeTgPe0F3R3*Oe&new=1想入门机器学习?机器之心为你准备了一份中文资源合集机器之
转载
88阅读
0评论
0点赞
发布博客于 9 月前

MSRA王井东详解ICCV 2017入选论文:通用卷积神经网络交错组卷积

7 月 17 日,微软亚洲研究院的一篇论文,《Interleaved Group Convolutions for Deep Neural Networks》入选计算机视觉领域顶级会议 ICCV 2017(International Conference on Computer Vision)。论文中提出了一种全新的通用卷积神经网络交错组卷积(Interleaved Group Convolution,简称 IGC)模块,解决了神经网络基本卷积单元中的冗余问题,可以在无损性能的前提下,缩减模型、提升计算速度
转载
165阅读
0评论
0点赞
发布博客于 9 月前

基于双流融合网络的遥感图像融合 论文笔记

Remote sensing image fusion based on two-stream fusion network期刊:information fusion年份:2020作者:Xiangyu Liua, Qingjie Liua,b,∗, Yunhong Wang摘要: 受卷积神经网络(CNN)启发,本文提出了一种双流融合网络(TFNet)来解决这一问题。与许多以前...
原创
725阅读
0评论
0点赞
发布博客于 9 月前

具有深度先验的高光谱图像泛锐化算法 论文笔记

Hyperspectral Pansharpening With Deep Priors具有深度先验的高光谱泛锐化(HPDP)来源:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS作者:Weiying Xie , Member, IEEE, Jie Lei , Member, IEEE, Yuhang Cui, Yunsong Li, and Qian Du , Fellow, IEEE年份:2019
原创
675阅读
0评论
0点赞
发布博客于 10 月前

一种新的基于对抗性的高光谱和多光谱图像融合方法 论文笔记

题目:A Novel Adversarial Based Hyperspectraland Multispectral Image Fusion期刊:remote sensing年份:2019作者:Xukun Luo , Jihao Yin ,, Xiaoyan Luo and Xiuping Jia摘要:为了重建高空间分辨率和高光谱分辨率的图像,最常用的方法之一就是将高...
原创
1467阅读
0评论
0点赞
发布博客于 10 月前