和第198题没有本质区别。
定义dp数组,n是房间总个数。dp[i]表示从第0号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额,按照这个定义,dp[n-1]就是答案。dp[0]一直到dp[n-2]的求法和第198题一模一样,唯独dp[n-1]需要特别考虑。
对于最后一个房间(即第n-1号房间),只有两种可能,偷或者不偷。
- 如果不偷第n-1号房间,则dp[n-1] = dp[n-1-1]。
- 如果偷第n-1号房间,则除了像第198题一样不能偷第n-2号房间外,还要求一定不能偷第0号房间。问题可以转化为,不考虑第0号房间,只考虑从第1号房间一直到第n-1-2号房间。因此另外定义一个dp2数组。dp2[i]表示从第1号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额,dp2[0]不定义。dp[n-1] = dp2[n-1-2] + nums[n-1]。
dp[n-1]取前述两种情况的最大值,dp[n-1] = max(dp[n-1-1], dp2[n-1-2] + nums[n-1]);
第一版代码
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
//dp[i]表示从第0号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额
//按照这个定义,dp[n-1]就是答案。
vector<int> dp(n);
dp[0] = nums[0];
if(n ==1) return dp[0];
dp[1] = max(nums[0],nums[1]);
if(n ==2) return dp[1];
//dp[0]一直到dp[n-2]的求法和第198题一模一样,唯独dp[n-1]需要特别考虑。
for(int i = 2;i < n -1;i++){
dp[i] = max(dp[i-2]+nums[i],dp[i-1]);
}
//dp2[i]表示从第1号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额,dp2[0]不定义
vector<int> dp2(n);
dp2[1] = nums[1];
dp2[2] = max(nums[1],nums[2]);
for(int i = 3; i < n;i++){
dp2[i] = max(dp2[i-2]+nums[i],dp2[i-1]);
}
dp[n-1] = max(dp2[n-1-2]+nums[n-1],dp[n-1-1]);
return dp[n-1];
}
};
求dp2和求dp可以在一次遍历中求取。
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
//dp[i]表示从第0号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额
//按照这个定义,dp[n-1]就是答案。
vector<int> dp(n);
dp[0] = nums[0];
if(n ==1) return dp[0];
dp[1] = max(nums[0],nums[1]);
if(n ==2) return dp[1];
if(n ==3) return max(max(nums[0],nums[1]),nums[2]);
//dp2[i]表示从第1号房间一直到第i号房间(包含第i号房间)可以偷到的最大金额,dp2[0]不定义
vector<int> dp2(n);
dp2[1] = nums[1];
dp2[2] = max(nums[1],nums[2]);
for(int i = 2;i < n -1;i++){
if(i>=3)
dp2[i] = max(dp2[i-2]+nums[i],dp2[i-1]);
dp[i] = max(dp[i-2]+nums[i],dp[i-1]);
}
//dp[n-1]需要特别考虑
dp[n-1] = max(dp2[n-1-2]+nums[n-1],dp[n-1-1]);
return dp[n-1];
}
};