T-LSTM模型

T-LSTM模型针对标准LSTM无法处理不规则时间间隔的问题,通过引入时间衰减函数调整短期记忆影响,适用于医疗记录等时间序列分析。它将记忆状态分为短期和长期,根据时间间隔调整短期记忆,保留长期记忆,从而更好地捕捉时间序列中的依赖关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

T-LSTM(Time-Aware LSTM)模型考虑了时间序列之间的时间间隔,他的主要思想是将记忆状态分为短期记忆和长期记忆,根据输入之间的时间间隔调整短期记忆的影响,时间间隔越长,短期记忆的影响越小,接着将调整后的短期记忆与长期记忆重组为新的记忆状态。

参考论文:
《Patient Subtyping via Time-Aware LSTM Networks》
介绍了T-LSTM模型以及其在分析医疗记录中的应用。
以下是基于论文对模型的理解:

标准LSTM网络的局限

  • 不能处理不规则的时间间隔

标准LSTM单元由遗忘门、输入门、输出门和存储单元组成,但该体系结构隐含了一个假设,即序列元素之间的运行时间是均匀分布的。因此,在LSTM体系结构中没有集成纵向数据中可能出现的时间不规则性。
例如,在一个短暂的患者记录中事件的分布是高度不均匀的,在医疗保健领域,时间为t-1、t和t+1的记录之间的时间间隔可以从天到年不等。在图1中使用一个病人的医疗记录片段示例来说明这一点,记录之间的时间差异从一个月到几个月不等。这种不同的时间间隔可能预示着某些即将发生的疾病。例如,频繁入院可能表明有严重的健康问题,而这些就诊记录提供了研究病情进展的来源。另一方面,如果两个连续记录之间有几个月的时间,之前的记忆就不应在预测时发挥太大的作用。
在这里插入图片描述

考虑到连续两次医院就诊之间所经过的时间是医疗保健

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值