初学者好 |如何从头开始创建一个图像识别的AI应用[ctrl:c+v,你就完成了]

本文适合初学者,将指导你使用TensorFlow创建一个手写数字识别的AI模型,并通过Gradio将其转化为交互式网络应用。无需复杂环境配置,只需复制粘贴代码即可。首先,安装Gradio并导入所需库,接着使用简单的神经网络模型训练MNIST数据集,最后利用Gradio创建实时图像识别应用。
摘要由CSDN通过智能技术生成
  • 🔔 博客主页:https://blog.csdn.net/weixin_41556756
  • 📣 欢迎🎉点赞👍收藏🌟评论📝如有错误请指正!
  • 💻 前端&Python领域博主
  • 😁 你们的支持是我最大的动力

📢前言

在这篇文章中,我将向你展示如何从头开始创建一个图像识别AI应用。 具体来说,我们要创建一个人工智能应用程序,以识别你自己画的手写数字。

首先,让我们看一个样本。 它被称为 “数字识别器”。 你可以在左边的盒子里画出你喜欢的0到9的数字,预测结果会出现在右边。 如果你的字迹像我一样凌乱,它可能无法正确识别数字,但如果你仔细画,它就会像这样识别(笑)。

这一次,我们将制作一个网络应用程序,可以像这样识别你所画的数字。 此外,这篇文章的标题是 “从头开始创建”。 换句话说,我们将使用TensorFlow创建一个AI模型,而不是使用API。 然而,我们将使用的模型是一个简单的神经网络。

你们中的一些人可能会想 "哦,我压根就不知道怎么做… "或 “建立一个环境似乎很难…”, 但不要担心,我们将使用谷歌Colab,所以任何人都可以通过复制和粘贴来创建它。

你可能有这样的误解,认为深度学习和机器学习需要大量的理论和数学知识,但重要的是先做出能用的东西。 如果这个视频让你觉得人工智能很有趣,那么你可以开始详细研究理论和数学。

顺便说一下,我想说的是。

  • 学习如何创建像这样的AI应用的课程
  • 我想知道你想了解哪个课程。

请在评论中告诉我们你想看哪一个! 或者你可以同时进行!

现在我们已经有点偏离主题了,让我们来谈谈细节问题。

🤚初学者好!如何从头开始创建一个图像识别的AI应用[复制和粘贴,你就完成了]。

以下是你需要采取的三个步骤,以便开始工作。

  • 「第①步:导入库」
  • 「第②步:用TensorFlow创建一个AI模型」
  • 「第③步:用Gradio创建一个图像识别应用程序」

第一步是导入我们将使用的库,然后我们将使用TensorFlow创建一个AI模型。 然后我们将使用TensorFlow创建一个人工智能模型,最后我们将使用Gradio把它变成一个网络应用。 对于其他框架,如Streamlit,你需要做更多的工作来把它变成谷歌Colab应用,但对于Gradio,你可以像现在这样在单元格中运行代码。

使用Gradio,你只需要在单元格中运行代码。 因此,让我们从第一步开始。

📪第①步:导入库

我们将使用的Gradio在默认情况下不包括在内。 所以你需要先安装它。 当你安装它时,你需要添加-q来隐藏额外的日志。

$ pip install gradio -q

等待一会儿,直到执行完毕。

--------------------------------------✂️--------------------------------------

一旦Gradio安装完成,我们就可以导入库了。 我们将使用TensorFlow和Gradio,所以我们将import tensorflow as tf,然后我们将import gradio as gr

TensorFlow的最新版本是2系列。 让我们检查一下TensorFlow的版本,tf.__version__。 在使用Google Colab时,默认的版本是2.5.0,但在这种情况下,我想让它明确是2.5.0,所以我也会写%tensorflow_version 2.x

%tensorflow_version 2.x
import tensorflow as tf
import gradio as gr

我还想补充一点。

一旦你完成了这些,按Shift + Enter。 我们还想删除多余的日志,所以我们将使用

tf.get_logger().
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前端仙人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值