本文介绍了如何使用昇思MindSpore框架构建基于MNIST数据集的手写数字识别模型。首先,讲解了MindSpore的优势和架构。随后,详细描述了从数据下载、预处理到神经网络模型定义、训练和测试的完整流程。通过实例代码演示了如何使用MindSpore进行模型训练、保存和加载,并展示了模型预测的结果。最后,总结了学习过程中的重要经验和心得,鼓励读者动手实践,进一步探索和应用MindSpore。


一、昇思大模型介绍

昇思MindSpore是 一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。 其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。

昇思MindSpore架构各模块功能如下:

模块名称

描述

ModelZoo(模型库)

提供各种可用的深度学习算法网络,供用户直接使用。

MindSpore Extend(扩展库)

昇思MindSpore的领域扩展库,支持新领域的拓展,如图神经网络(GNN)、深度概率编程和强化学习等。

MindScience(科学计算)

基于昇思MindSpore构建的科学计算套件,包含领先的数据集、基础模型、高精度预置模型和前后处理工具,加速科学计算领域的应用开发。

MindExpression(全场景统一API)

基于Python的编程接口,融合了函数式编程和面向对象编程范式,支持AI与数值计算的表达统一,以及动静态表达和单机分布式表达的统一。

第三方前端

支持多语言前端表达,未来计划逐步对接C/C++等第三方前端,以扩展更多的第三方生态系统。

MindSpore Data(数据处理层)

提供高效的数据处理和常用数据集加载功能,支持用户灵活定义处理注册和管道并行优化。

MindCompiler(AI编译器)

图层的核心编译器,基于端云统一的MindIR实现三大功能:硬件无关优化、硬件相关优化以及部署推理相关优化。

MindRT(全场景运行时)

昇思MindSpore的运行时系统,包括云端主机运行时系统、端侧和轻量化IoT运行时系统。

MindSpore Insight(可视化调试调优工具)

可视化调试和调优工具,能可视化查看训练过程,优化模型性能,调试精度问题,并解释推理结果。

MindSpore Armour(安全增强库)

面向企业级应用的安全和隐私保护增强功能库,包括对抗鲁棒性、模型安全测试、差分隐私训练、隐私泄露风险评估和数据漂移检测等技术。


二、Jupyter Lab介绍

Jupyter Lab集成了很多编辑器,例如Jupyter笔记本、文本编辑器、终端和自定义组件。它提供了一个灵活的界面,可以将不同类型的文件(如笔记本、文本文件、终端等)放在一起进行管理和操作。通过Jupyter Lab,用户可以方便地编写和调试代码,记录实验过程,生成和分享报告。这种集成环境极大地提高了开发效率,是数据科学家和开发者的得力工具。

昇思大模型-基于MNIST数据集的实现手写数字识别_MNIST

目前Jupyter运行时长限制只能运行2个小时。2个小时之后将会自动释放所有资源,请提前将所需资源下载到本地或git push到平台中。

模式介绍

Jupyter Lab 的 Notebook 中有两种模式,分别是编码模式(Edit mode)和命令模式(Command mode)。编码模式就是光标在 code 栏中闪烁时的模式,而命令模式就是点击 code 栏中括号后,code 栏变成灰色时的模式。

  • 在编码模式下可以通过按 Esc 键进入命令模式
  • 在命令模式下可以通过按 Enter 键进入编码模式

常用快捷键

选中cell或者在cell中按ESE按键进入到命令模式,再执行以下快捷键

快捷键

描述

Ctrl + Enter

运行本栏代码,保持在本栏并进入命令模式

Shift + Enter

运行本栏代码,跳到下一栏并进入命令模式

Alt + Enter

运行本栏代码,跳到下一栏并进入编辑模式

a

在本栏代码前增加一栏,并跳到新增加的一栏,仍处在命令模式下

b

在本栏代码后增加一栏,并跳到新增加的一栏,仍处在命令模式下

dd

删除本代码栏,并自动跳到下一栏代码栏,仍处在命令模式下

m

切换到 Markdown 模式,仍处在命令模式下,按下 Enter 可进入编辑模式

y

切换到 Code 模型,仍处在命令行模式下,按下 Enter 可进入编辑模式


三、MindSpore实战-构建基于MNIST的手写数字识别模型

通过上面对昇思大模型和Jupyter Lab的介绍,相信大家对此已经有所了解,下面我们来实战一个小型项目——通过昇思大模型构建基于MNIST数据集的手写数字识别模型。

1. 创建Python程序

创建workspace文件夹,文件夹下创建基于 Python3.ipynb 程序。

昇思大模型-基于MNIST数据集的实现手写数字识别_图像识别_02

重命名为 day001.ipynb

昇思大模型-基于MNIST数据集的实现手写数字识别_AI_03

2. 导入必要的库

首先,我们需要导入MindSpore库以及其他一些必要的模块。MindSpore是华为推出的深度学习框架,具有高效、便捷、可扩展等特点。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
from download import download
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
3. 下载并加载数据集

我们将使用MNIST数据集,该数据集包含手写数字的灰度图像。数据集可以通过下载功能获取,并解压到指定目录。

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
  • 1.
  • 2.
  • 3.
  • 4.

昇思大模型-基于MNIST数据集的实现手写数字识别_昇思大模型_04

4. 数据预处理

为了让模型更好地学习,我们需要对图像数据进行预处理。我们将图像数据归一化,并将其转换为模型可以接受的格式。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
5. 定义神经网络模型

我们将定义一个简单的神经网络模型来进行手写数字识别。该模型包含三个全连接层和两个ReLU激活函数。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.

昇思大模型-基于MNIST数据集的实现手写数字识别_MNIST_05

6. 定义损失函数和优化器

我们使用交叉熵损失函数和随机梯度下降(SGD)优化器来训练我们的模型。

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)
  • 1.
  • 2.
7. 训练步骤和训练过程

训练过程包括前向传播、计算损失、反向传播以及更新模型参数。

def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.

昇思大模型-基于MNIST数据集的实现手写数字识别_数据集_06

8. 测试过程

测试过程包括对测试数据进行预测,并计算准确率和平均损失。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
9. 训练和测试模型

我们将模型训练3个周期(epochs),并在每个周期结束后测试模型的表现。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

昇思大模型-基于MNIST数据集的实现手写数字识别_AI_07

10. 保存和加载模型

训练完成后,我们将模型参数保存到文件中,并演示如何加载已保存的模型。

mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

model = Network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
11. 进行预测并显示结果

最后,我们使用加载的模型进行预测,并展示预测结果。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

昇思大模型-基于MNIST数据集的实现手写数字识别_MNIST_08


四、实战总结

今天的学习和实战让我们快速掌握了使用MindSpore构建手写数字识别模型的基本流程。通过这一过程,我有一些自己的思考和总结。

在深度学习中,数据预处理是至关重要的一步。适当的归一化和标准化可以显著提升模型的训练效果,确保模型更快收敛并达到更高的精度。数据预处理不仅能减少训练时间,还能提高模型的泛化能力,避免过拟合。虽然简单的全连接层模型在MNIST数据集上表现良好,但面对更复杂的任务时,需要设计更复杂的网络结构并进行超参数调优。选择合适的网络结构,如卷积神经网络(CNN)或递归神经网络(RNN),并通过调整学习率、批处理大小、网络层数等超参数,能够优化模型性能。同时,使用Dropout或L2正则化等技术可以防止模型过拟合。

MindSpore提供了丰富的API,使得模型构建和训练过程更加简洁高效。其动态图特性大大方便了模型的调试和开发,提高了开发效率。此外,MindSpore的自动微分和自动并行功能也让开发者能更专注于模型设计,而无需担心底层实现细节。在实战过程中,我们可能会遇到数据集不足、模型过拟合或欠拟合等挑战。通过数据增强、模型集成和早停法等方法,可以有效解决这些问题,增加数据集的多样性,提高预测准确性,并防止过拟合。

通过今天的实战,我们成功构建了一个手写数字识别模型,并对其进行了训练和测试。模型在训练集上的损失逐渐减小,准确率逐渐提高,表明模型在学习过程中不断优化。在测试集上的表现与训练集相近,说明模型具有良好的泛化能力。在接下来的24天中,期待与大家一起继续探索和学习昇思大模型的更多应用和技巧,包括高级模型应用、模型优化技巧以及实际项目实践。希望大家能通过这些学习和实践,积累更多经验,解决实际问题。