YOLO系列

YOLOv1

论文: You Only Look Once:Unified, Real-Time Object Detection.
项目主页: https://pjreddie.com/darknet/yolo/.
来源:CVPR 2016

1.1 核心思想

  • 将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对边界框的位置和类别进行回归,即,使用一个简单的CNN网络同时预测多个边界框以及每个边界框对应的类别概率。
    在这里插入图片描述

1.2 实现方法

在这里插入图片描述

  1. 将一幅图像分成 S × S S\times S S×S个网格(grid cell),如果某个object的中心落在这个网格中,则这个网格就负责预测这个object。
  2. 每个网络需要预测B个bounding box,每个bounding box对应着4个位置信息和1个confidence信息。
    1)4个位置信息指 ( x , y , w , h ) (x,y,w,h) (x,y,w,h) ( x , y ) (x,y) (x,y)指边界框的中心相对网格中心的偏移量, ( w , h ) (w,h) (w,h)是边界框的宽和高相对于原图的比例。
    2)confidence代表了所预测的bounding box中含有object的置信度和这个box预测得有多准两重信息,即 P r ( O b j e c t ) ∗ I O U p r e d t r u t h Pr(Object)*IOU_{pred}^{truth} Pr(Object)IOUpredtruth
  3. 每个网格会给出 C C C个类别概率: P r ( C l a s s i ∣ O b j e c t ) Pr(Class_i|Object) Pr(ClassiObject),即,给定一个目标Object,该目标分别属于 C C C个不同类别的概率。
  4. 边界框的最终score是:
    P r ( C l a s s i ∣ O b j e c t ) ∗ P r ( O b j e c t ) ∗ I O U p r e d t r u t h = P r ( C l a s s i ) ∗ I O U p r e d t r u t h Pr(Class_i|Object)*Pr(Object)*IOU_{pred}^{truth}=Pr(Class_i)*IOU_{pred}^{truth} Pr(ClassiObject)Pr(Object)IOUpredtruth=Pr(Classi)IOUpredtruth
  5. 网络总的输出就是 S × S × ( 5 ∗ B + C ) S\times S\times(5*B+C) S×S×(5B+C))的一个tensor。

注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。

举例说明:
在这里插入图片描述

1.3 网络结构

在这里插入图片描述

  • 24convs+2fc;
  • 参数量集中在2fc,2fc head做预测,检测速度比较慢(SSD采用conv head,速度快);
  • 预训练:前20convs+1avg_pooling+1fc(称为Darknet-19),在ImageNet数据集上预训练,输入图像为 224 × 224 224\times224 224×224
  • 微调:前20convs++1avg_pooling+1fc+4convs+2fc,在VOC上微调,输入图像为 448 × 448 448\times448 448×448

1.4 损失函数

回归问题:sum-squared error loss

L o s s = ∑ i = 1 S 2 L i = ∑ i = 1 S 2 ∣ ∣ T i p r e d − T i t r u t h ∣ ∣ 2 2 Loss=\sum_{i=1}^{S^2}L_i=\sum_{i=1}^{S^2}||T_i^{pred}-T_i^{truth}||_2^2 Loss=i=1S2Li=i=1S2TipredTitruth22其中,
T i p r e d = [ T i l o c , T i c o n f , T i p r o b ] T_i^{pred}=[T_i^{loc},T_i^{conf},T_i^{prob}] Tipred=[Tiloc,Ticonf,Tiprob] T i l o c = [ x i 1 , y i 1 , w i 1 , h i 1 , x i 2 , y i 2 , w i 2 , h i 2 ] T_i^{loc}=[x_i^1,y_i^1,w_i^1,h_i^1,x_i^2,y_i^2,w_i^2,h_i^2] Tiloc=[xi1,yi1,wi1,hi1,xi2,yi2,wi2,hi2] T i c o n f = [ c i 1 , c i 2 ] T_i^{conf}=[c_i^1,c_i^2] Ticonf=[ci1,ci2] T i p r o b = [ p i 1 , p i 1 , . . . , p i 20 ] T_i^{prob}=[p_i^1,p_i^1,...,p_i^{20}] Tiprob=[pi1,pi1,...,pi20] T i t r u t h T_i^{truth} Titruth是与 T i p r e d T_i^{pred} Tipred对应的30维真实标签。

改进1
8维的定位损失和22维的分类损失同等重要显然是不合理的,解决办法是更重视8维的坐标预测,给定位损失赋予更大的loss weight,即设置 λ c o o r d = 5 \lambda_{coord}=5 λcoord=5,损失函数改进为:

L o s s = λ c o o r d ∑ i = 1 S 2 ∣ ∣ T i l o c − T ^ i l o c ∣ ∣ 2 2 + ∑ i = 1 S 2 ∣ ∣ T i c o n f − T ^ i c o n f ∣ ∣ 2 2 + ∑ i = 1 S 2 ∣ ∣ T i p r o b − T ^ i p r o b ∣ ∣ 2 2 Loss=\lambda_{coord}\sum_{i=1}^{S^2}||T_i^{loc}-\hat{T}_i^{loc}||_2^2+\sum_{i=1}^{S^2}||T_i^{conf}-\hat{T}_i^{conf}||_2^2+\sum_{i=1}^{S^2}||T_i^{prob}-\hat{T}_i^{prob}||_2^2 Loss=λcoordi=1S2TilocT^iloc22+i=1S2TiconfT^iconf22+i=1S2TiprobT^iprob22

改进2
输入图像中的ground truth通常是很少的,这使得很多网络没有object,对于这些没有object的网格,不需要给出20个类别概率,所以在损失函数中也不应该有这部分损失,所以引入指示函数 I i o b j {\mathbb I}_i^{obj} Iiobj,表示某个object的中心落入第 i i i个网格中,损失函数变成:
L o s s = λ c o o r d ∑ i = 1 S 2 ∣ ∣ T i l o c − T ^ i l o c ∣ ∣ 2 2 + ∑ i = 1 S 2 ∣ ∣ T i c o n f − T ^ i c o n f ∣ ∣ 2 2 + ∑ i = 1 S 2 I i o b j ∣ ∣ T i p r o b − T ^ i p r o b ∣ ∣ 2 2 Loss=\lambda_{coord}\sum_{i=1}^{S^2}||T_i^{loc}-\hat{T}_i^{loc}||_2^2+\sum_{i=1}^{S^2}||T_i^{conf}-\hat{T}_i^{conf}||_2^2+\sum_{i=1}^{S^2}{\mathbb I}_i^{obj}||T_i^{prob}-\hat{T}_i^{prob}||_2^2 Loss=λcoordi=1S2TilocT^iloc22+i=1S2TiconfT^iconf22+i=1S2IiobjTiprobT^iprob22

改进3

在构造训练标签时,物体的中心落入哪个网格,就由该网格负责预测它,但具体是由该网格的哪个box来预测它,需要通过网络输出来确定,即该网格中的哪个box与该gt框的IoU大,则由该box负责预测它(事后确定,动态变化)。由于98个box是未知的,所以在构造真实位置标签时,同一个grid cell的两个box的位置标签是一样的,都是GT框中心相对于该网格中心的偏移量以及GT框宽高相对于图像宽高的比例。

这样子,无需负责预测任何object的box,将不产生loc损失。用指示函数 I i j o b j {\mathbb I}_{ij}^{obj} Iijobj,表示第 i i i个网格中的第 j j j个box负责预测某个object。如此一来,很多box都是不需要预测object的(这些box可以称为二分类中的negative),如此多的negative box虽然有助于二分类,但会淹没positive box的作用(正负样本不平衡),所以对negative box产生的conf损失添加一个权重因子 λ n o o b j = 0.5 \lambda_{noobj}=0.5 λnoobj=0.5,最终损失函数变成:
L o s s = λ c o o r d ∑ i = 1 S 2 ∑ j = 1 B I i j o b j ∣ ∣ T i j l o c − T ^ i j l o c ∣ ∣ 2 2 Loss=\lambda_{coord}\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{obj}||T_{ij}^{loc}-\hat{T}_{ij}^{loc}||_2^2 Loss=λcoordi=1S2j=1BIijobjTijlocT^ijloc22 + ∑ i = 1 S 2 ∑ j = 1 B I i j o b j ∣ ∣ c i j − c ^ i j ∣ ∣ 2 2 + λ n o o b j ∑ i = 1 S 2 ∑ j = 1 B I i j n o o b j ∣ ∣ c i j − c ^ i j ∣ ∣ 2 2 +\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{obj}||c_i^j-{\hat{c}}_i^{j}||_2^2+\lambda_{noobj}\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{noobj}||c_i^j-{\hat{c}}_i^{j}||_2^2 +i=1S2j=1BIijobjcijc^ij22+λnoobji=1S2j=1BIijnoobjcijc^ij22 + ∑ i = 1 S 2 I i o b j ∣ ∣ T i p r o b − T i ^ p r o b ∣ ∣ 2 2 +\sum_{i=1}^{S^2}{\mathbb I}_i^{obj}||T_i^{prob}-\hat{T_i}^{prob}||_2^2 +i=1S2IiobjTiprobTi^prob22

改进4
对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。

为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width(已采用原图的宽和高归一化至[0,1])。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。(也是个近似逼近方式)

在这里插入图片描述
最终损失函数变成:
L o s s = λ c o o r d ∑ i = 1 S 2 ∑ j = 1 B I i j o b j [ ( x i j − x ^ i j ) 2 + ( y i j − y ^ i j ) 2 ] Loss=\lambda_{coord}\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{obj}\left[\left ( x_{i}^j-\hat{x}_i^j \right)^2+\left ( y_{i}^j-\hat{y}_i^j \right)^2\right] Loss=λcoordi=1S2j=1BIijobj[(xijx^ij)2+(yijy^ij)2] + λ c o o r d ∑ i = 1 S 2 ∑ j = 1 B I i j o b j [ ( w i j − w ^ i j ) 2 + ( h i j − h ^ i j ) 2 ] +\lambda_{coord}\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{obj}\left[\left ( \sqrt{w_{i}^j}-\sqrt{\hat{w}_i^j} \right)^2+\left ( \sqrt{h_{i}^j}-\sqrt{\hat{h}_i^j} \right)^2\right] +λcoordi=1S2j=1BIijobj[(wij w^ij )2+(hij h^ij )2] + ∑ i = 1 S 2 ∑ j = 1 B I i j o b j ∣ ∣ c i j − c ^ i j ∣ ∣ 2 2 + λ n o o b j ∑ i = 1 S 2 ∑ j = 1 B I i j n o o b j ∣ ∣ c i j − c ^ i j ∣ ∣ 2 2 +\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{obj}||c_i^j-{\hat{c}}_i^{j}||_2^2+\lambda_{noobj}\sum_{i=1}^{S^2}\sum_{j=1}^{B}{\mathbb I}_{ij}^{noobj}||c_i^j-{\hat{c}}_i^{j}||_2^2 +i=1S2j=1BIijobjcijc^ij22+λnoobji=1S2j=1BIijnoobjcijc^ij22 + ∑ i = 1 S 2 I i o b j ∣ ∣ T i p r o b − T i ^ p r o b ∣ ∣ 2 2 +\sum_{i=1}^{S^2}{\mathbb I}_i^{obj}||T_i^{prob}-\hat{T_i}^{prob}||_2^2 +i=1S2IiobjTiprobTi^prob22

  • 第1、2项是坐标预测,第3、4项是confidence预测,第5项是类别预测
  • I i j o b j {\mathbb I}_{ij}^{obj} Iijobj:表示第 i i i个网格中的第 j j j个box负责预测某个object
  • I i j n o o b j {\mathbb I}_{ij}^{noobj} Iijnoobj:表示第 i i i个网格中的第 j j j个box不负责预测某个object
  • I i o b j {\mathbb I}_i^{obj} Iiobj,表示某个object的中心落入第 i i i个网格中
  • 只有当某个网格中有object的时候才对classification error进行惩罚。
  • 只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

其他细节

  • dropout防止过拟合:在第一个fc层后接dropout
  • warmup学习率:在第一个epoch中,learning rate由 1 0 − 3 10^{-3} 103慢慢升至 1 0 − 2 10^{-2} 102
  • 数据增强:随机缩放,颜色变换

1.5 优缺点

优点:

  • 原理简单,检测速度快(45fps);
  • 背景误检率低:在做边界框预测时,YOLO考虑了整张图像,而滑动窗口检测器和基于候选区域的R-CNN都只是考虑图像块;
  • 泛化能力好,通用性强:YOLO对于艺术类作品中的物体检测同样适用,它对非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。

缺点:

  • 输入图像的分辨率固定:由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率;
  • 召回率低,对小目标的检出率低:虽然每个网格可以预测B个bounding box,但是最终只选择IOU最高的bounding box作为物体检测输出,即每个网格最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。
  • 定位误差大,定位精度不高:YOLO损失函数中,大物体定位误差和小物体定位误差对网络训练中loss贡献值接近(虽然采用求平方根方式,但没有根本解决问题)。

YOLOv2

论文: YOLO9000: Better, Faster, Stronger.
项目主页: https://pjreddie.com/darknet/yolo/.
时间:2016

2.1 Motivation

与基于候选区域的两阶段目标检测算法(如Fast R-CNN)相比,YOLO存在以下两个问题:

  • 召回率低,对小目标的检出率低:即漏检情况严重,无法很好地检测出所有真实目标
  • 定位误差大:即使能检测出目标,但检测出的目标的边界框与真实目标边界框的IOU较小。

2.2 各类改进

作者针对YOLO存在的两个问题,进行了多方面的改进,最终得到了当时的SOTA目标检测算法:YOLOv2。
aaa

  1. 改进1:BN算法(Batch Normalization)

BN算法既能使网络更容易训练,又能防止模型过拟合,提高模型的泛化能力。BN算法有助于解决反向传播过程中的梯度消失和梯度爆炸问题,降低对一些超参数(比如学习率、网络参数的大小范围、激活函数的选择)的敏感性,并且每个batch分别进行归一化的时候,起到了一定的正则化效果(YOLOv2不再使用dropout),从而能够获得更好的收敛速度和收敛效果。具体原理请参考:BN算法

作者在YOLO网络的所有卷积层上使用BN算法,并移除全连接层上的Dropout,该做法提高了2.4%的mAP。

  1. 改进2:提高分类器的输入图像分辨率(High Resolution Classifier)

YOLOv1在ImgeNet数据集上预训练了一个分辨率为 224 × 224 224\times224 224×224的网络(网络的分辨率指的是输入图像的分辨率),该预训练网络为Darknet-19(20 conv + 1 avg_pool + 1 fc),训练后移除1 avg_pool + 1 fc,并在20 conv后面加上4 conv + 2 fc,得到YOLOv1网络,接着在目标检测数据集上对YOLOv1网络进行训练,此时网络的分辨率由 224 × \times × 224 提高到 448 × \times × 448 。在训练时,YOLOv1网络在目标检测数据集上既要适应新的分辨率,又要完成检测任务,这可能影响目标检测的准确性。

针对以上问题,YOLOv2将适应新分辨率和进行目标检测这两项任务分开,即,先采用 224 × 224 224\times224 224×224 的ImageNet图像进行分类模型预训练(160个epoch),再采用 448 × 448 448\times448 448×448的高分辨率分类样本对分类模型进行微调(10个epoch),使网络特征逐渐适应 448 × 448 448\times448 448×448 的分辨率。修改网络后再使用 448 × 448 448\times448 448×448的检测样本进行训练,缓解了分辨率突然切换造成的影响。该做法又提高了4%的mAP。

  1. 改进3:Convolutional With Anchor Boxes
  • RPN和SSD只使用卷积层来预测anchor boxes的坐标偏移量和置信度;
  • YOLOv1使用全连接层来预测坐标和置信度。

使用卷积层代替全连接层:
YOLOv1全连接层的使用,即引入了大量的参数和计算量,又限制了网络的输入大小。YOLOv2借鉴了RPN和SSD的做法,只使用卷积层进行预测,使网络输入为任意大小。

YOLOv2移除了YOLO网络的全连接层,并去掉了网络中的一个pooling层,这让卷积层的输出能有更高的分辨率。此时输入图像分辨率为 416 × 416 416\times416 416×416,总的下采样率为32(5个下采样率均为2的最大池化层),最终得到 13 × 13 13\times13 13×13的特征图。

将图像分辨率由 448 × 448 448\times448 448×448减小为 416 × 416 416\times416 416×416的原因:
由于图片中的物体都倾向于出现在图片的中心位置,特别是那种比较大的物体,所以由一个单独位于物体中心的位置用于预测这些物体会比较好(而不是最中间的4个)。YOLOv2的总的下采样率为32, 416 × 416 416\times416 416×416的输入图像可以输出奇数的特征图尺寸 13 × 13 13\times13 13×13 448 × 448 448\times448 448×448的输入图像可以输出偶数的特征图尺寸 14 × 14 14\times14 14×14)。

引入anchor:
借鉴Faster RCNN的做法,YOLOv2也尝试采用先验框(anchor)。在 13 × 13 13\times13 13×13的特征图上的每个grid预先设定一组不同大小和宽高比的边界框,来覆盖整个图像的不同位置和多种尺度的物体,这些先验框作为预定义的候选框在神经网络中将检测其中是否存在对象,以及微调边界框的位置。

之前YOLOv1并没有采用anchor,并且每个grid只预测2个bounding box,整个图像98个。YOLOv2每个grid采用5个anchor,则总共有 13 ∗ 13 ∗ 5 = 845 13*13*5=845 13135=845个anchor。

最终结果:召回率大幅提升到88%,同时mAP轻微下降了0.2。

  • 改进前:每张图像预测98个bounding boxes。mAP=69.5%,recall=81%
  • 改进后:每张图像预测845个bounding boxes。mAP=69.2%,recall=88%
  1. 改进4:k-means聚类出anchor的形状(Dimension Clusters)

在Faster R-CNN和SSD中,anchor的数量、大小、宽高比都是手动选择的(或通过实验结果来确定),anchor的大小和宽高比越符合数据集,那么边界框回归会更容易,目标检测结果也会更好。因此,YOLOv2使用 k-means 聚类在训练集中自动聚类出 k k k个anchor(宽、高),再通过实验,由平均IoU指标来确定anchor的数量,如下所示:
在这里插入图片描述
通过平衡召回率和模型复杂度,最终确定 k = 5 k=5 k=5。此外,由图可以看出,COCO中物体尺寸的差异程度要比VOC大。

k-means聚类中用到了距离来度量相似性,在此问题中,如果采用欧式距离,大框产生的loss会比小框大,并且最终的聚类目标是找到最符合的anchor(IoU最小),但欧式距离小并不意味着IoU小,所以YOLOv2采用如下的相似性度量方法:
d ( b o x , c e n t r o i d ) = 1 − I O U ( b o x , c e n t r o i d ) d(box,centroid)=1-IOU(box,centroid) d(box,centroid)=1IOU(box,centroid)

在这里插入图片描述

  1. 改进5:直接预测边界框中心点的位置(Direct location prediction)

由于设置了anchor,YOLOv2原本可以像Faster R-CNN一样,通过预测anchor boxes的坐标偏移量和置信度来预测 bounding box,而不是直接预测坐标值。但是,作者在实际应用中发现,在训练的早期阶段,预测中心点的偏移量会导致网络训练不稳定:
{ x = ( t x ∗ w a ) + x a y = ( t y ∗ h a ) + y a \left\{ \begin{aligned} x & = & (t_x*w_a)+x_a \\ y & = & (t_y*h_a)+y_a \\ \end{aligned} \right. {xy==(txwa)+xa(tyha)+ya其中, x , y x,y x,y是预测边界框的中心点坐标, x a , y a x_a,y_a xa,ya是anchor的中心点坐标, w a , h a w_a,h_a wa,ha是anchor的宽和高, t x , t y t_x,t_y tx,ty是网络的输出偏移量。

由于 t x , t y t_x,t_y tx,ty的取值没有任何约束,因此预测边框的中心可能出现在任何位置,训练早期阶段不容易稳定。YOLOv2调整了边界框中心点的预测公式,将预测边界框的中心约束在特定gird cell内。
{ b x = σ ( t x ) + c x b y = σ ( t y ) + c y b w = p w e x p ( e t w ) b h = p h e x p ( e t h ) \left\{ \begin{aligned} b_x & = & \sigma(t_x)+c_x \\ b_y & = & \sigma(t_y)+c_y \\ b_w & = & p_wexp(e^{t_w}) \\ b_h & = & p_hexp(e^{t_h}) \\ \end{aligned} \right. bxbybwbh====σ(tx)+cxσ(ty)+cypwexp(etw)phexp(eth) P r ( o b j e c t ) ∗ I O U ( b , o b j e c t ) = σ ( t o ) P_r(object)*IOU(b,object)=\sigma(t_o) Pr(object)IOU(b,object)=σ(to)

  • b x , b y , b w , b h b_x,b_y,b_w,b_h bx,by,bw,bh是预测边界框的中心和宽高;
  • t x , t y , t w , t h , t o t_x,t_y,t_w,t_h,t_o tx,ty,tw,th,to是网络输出的边界框的中心、宽高和置信度,并使用sigmoid函数 σ ( . . . ) \sigma(...) σ(...) t x , t y , t o t_x,t_y,t_o tx,ty,to限制在[0, 1];
  • P r ( o b j e c t ) ∗ I O U ( b , o b j e c t ) P_r(object)*IOU(b,object) Pr(object)IOU(b,object)是预测边界框的置信度;
  • c x , c y c_x,c_y cx,cy是当前网格左上角到图像左上角的距离,要先将网格大小归一化,即令一个网格的宽=1,高=1:
  • p w , p h p_w,p_h pw,ph是先验框的宽和高。

注意:YOLOv2只修改边界框中心点坐标的预测公式,边界框宽高的预测公式与Faster R-CNN相同。
在这里插入图片描述

  1. 改进6:高低分辨率特征图融合(Fine-Grained Features)
  • passthrough层检测细粒度特征使mAP提升1%。
  • 目标检测面临的一个问题是图像中object有大有小,输入图像经过多层网络提取特征,最后输出的特征图中(比如YOLOv2中输入 416 × 416 416 \times 416 416×416的图像经过卷积网络下采样最后输出是 13 × 13 13 \times 13 13×13),较小的对象可能特征已经不明显甚至被忽略掉了。为了更好的检测出一些比较小的对象,最后输出的特征图需要保留一些更细节的信息。
  • 为了利用细粒度特征,SSD直接在不同分辨率的特征图上做预测,而YOLOv2引入一种称为passthrough层的方法在特征图中保留一些细节信息。具体来说,就是在最后一个pooling之前,特征图的大小是 26 × 26 × 512 26\times26\times512 26×26×512,将其1拆4,得到4个 13 × 13 × 512 13\times13\times512 13×13×512的小特征图,直接传递(passthrough)到最后的特征图,两者通道数叠加到一起作为输出的特征图。这一方法类似与Resnet的Identity Mapping。
    在这里插入图片描述
  1. 改进7:多尺度训练(Multi-Scale Training)
  • 相比YOLOv1,YOLOv2没有全连接层,其输入尺寸可以为任意大小。作者希望YOLO v2能健壮地运行于不同尺寸的图片之上,所以进行了多尺度训练:每10个batch,网络会随机地选择一个新的图片尺寸,由于总下采样率是32,所以不同的尺寸大小也选择为32的倍数 { 320 , 352 , . . . , 608 } \{320,352,...,608\} {320,352,...,608}
  • 多尺度训练让网络在不同的输入尺寸上都能达到一个很好的预测效果,同一网络能在不同分辨率上进行检测。当输入图片尺寸比较小的时候跑的比较快,输入图片尺寸比较大的时候精度高,所以YOLO v2可以很好在速度和精度上进行权衡。在这里插入图片描述
  1. 改进8:backbone的改进:提高backbone的前向推理速度
  • 借鉴VGG的结构:conv不改变特征尺寸,只改变通道数;pooling不改变通道数,但将特征尺寸缩小一半;pooling之后的第一个conv都使通道数加倍。

  • 借鉴Network in Network (NIN): 3 × 3 3\times3 3×3卷积之间使用 1 × 1 1\times1 1×1卷积来压缩特征图channles以降低模型计算量和参数,在最后使用全局池化层。

  • Darknet-19每个卷积层后面使用了BN层以加快收敛速度,降低模型过拟合。

  • 使用Darknet-19之后,YOLOv2的mAP值没有显著提升,但是计算量却可以减少约34%。
    在这里插入图片描述在这里插入图片描述

  • YOLOv2的网络结构图为:
    网络修改包括:移除最后一个卷积层、global avgpooling层以及softmax层,并且新增了三个 3 × 3 × 1024 3\times3\times1024 3×3×1024卷积层,同时增加了一个passthrough层,最后使用 1 × 1 1\times1 1×1卷积层输出预测结果,输出的channels数为: # a n c h o r \# anchor #anchor*(5+类别总数)$。由于anchors数为5,对于VOC数据集输出的channels数就是125,而对于COCO数据集则为425。
    在这里插入图片描述

总结

  • 虽然YOLOv2做了很多改进,但是大部分都是借鉴其它论文的一些技巧,如Faster R-CNN的anchor boxes,YOLOv2采用anchor boxes和卷积做预测,这基本上与SSD模型(单尺度特征图的SSD)非常类似了,而且SSD也是借鉴了Faster R-CNN的RPN网络。从某种意义上来说,YOLOv2和SSD这两个one-stage模型与RPN网络本质上无异,只不过RPN不做类别的预测,只是简单地区分物体与背景。
  • 在two-stage方法中,RPN起到的作用是给出region proposals,其实就是作出粗糙的检测,所以另外增加了一个stage,即采用R-CNN网络来进一步提升检测的准确度(包括给出类别预测)。
  • one-stage方法,它们想要一步到位,直接采用“RPN”网络作出精确的预测,要因此要在网络设计上做很多的tricks。
  • YOLOv2的一大创新是采用Multi-Scale Training策略,这样同一个模型其实就可以适应多种大小的图片了

YOLOv3

相对于YOLOv2,YOLOv3的改进之处:

  • 更好的backbone(Darknet-53,类似于ResNet引入残差结构)
  • 多尺度预测 (引入FPN)
  • anchor 数量和shape的改变
    分类器不再使用Softmax,分类损失采用binary cross-entropy loss(二分类交叉损失熵)
    YOLOv3不使用Softmax对每个框进行分类,主要考虑因素有两个:

Softmax使得每个框分配一个类别(score最大的一个),而对于Open Images这种数据集,目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。
Softmax可被独立的多个logistic分类器替代,且准确率不会下降。
分类损失采用binary cross-entropy loss。

  1. 改进1:更好的backbone

在Darknet-19的基础上添加更多的卷积层,并借鉴ResNet,引入残差结构,得到如下Darknet-53:

在这里插入图片描述
分类性能比较:
在这里插入图片描述

  • 相比于Darknet-19,Darknet-53准确率更高,但计算量也更大;
  • Darknet-53准确率与ResNet-101、ResNet-152相差不大,但计算量更少
  • Darknet-53的计算速度(BFLOP/s)是最快的。
  1. 改进2:引入FPN结构进行多尺度特征预测
  • SSD、FPN、RetinaNet中多尺度特征预测的效果是非常明显的,YOLOv3由此也引入FPN结构。
    在这里插入图片描述
    查看YOLOv3详细网络结构图
  1. 改变3:增加anchor数量
  • YOLOv2的anchor数量为5
  • YOLOv3的anchor数量为9,在 416 × 416 416\times416 416×416的输入图像下,anchor的shape为:

在这里插入图片描述

注: anchor的设计方式仍采用k-means聚类,得到9个聚类中心,将其按照大小均分给3个尺度,每种尺度预测3个box。

实验结果:
在这里插入图片描述
在这里插入图片描述

  • 速度和准确度比SSD好
  • 在速度-准确度平衡问题上,比RetinaNet好。RetinaNet可以达到更高的准确度,但所需的检测时间也更长。

YOLOv4

YOLOv4 在COCO上,可达43.5% AP,速度高达 65 FPS!

本文的主要贡献如下:

  1. 提出了一种高效而强大的目标检测模型。它使每个人都可以使用1080 Ti或2080 Ti GPU 训练超快速和准确的目标检测器。
  2. 在检测器训练期间,验证了SOTA的Bag-of Freebies 和Bag-of-Specials方法的影响。

YOLOv4模型由以下部分组成:

  • CSPDarknet53作为骨干网络BackBone;
  • SPP作为Neck的附加模块,PANet作为Neck的特征融合模块;
  • YOLOv3作为Head。

YOLOv4的特点是集大成者,俗称堆料。但最终达到这么高的性能,一定是不断尝试、不断堆料、不断调参的结果。下面看看堆了哪些料:

  • Weighted-Residual-Connections (WRC)
  • Cross-Stage-Partial-connections (CSP)
  • Cross mini-Batch Normalization (CmBN)
  • Self-adversarial-training (SAT)
  • Mish-activation
  • Mosaic data augmentation
  • DropBlock regularization
  • CIoU loss

其中YOLOv4用到相当多的技巧:

  • 用于backbone的BoF:CutMix和Mosaic数据增强,DropBlock正则化,Class label smoothing
  • 用于backbone的BoS:Mish激活函数,CSP,MiWRC
  • 用于检测器的BoF:CIoU-loss,CmBN,DropBlock正则化,Mosaic数据增强,Self-Adversarial 训练,消除网格敏感性,对单个ground-truth使用多个anchor,Cosine annealing scheduler,最佳超参数,Random training shapes
  • 用于检测器的Bos:Mish激活函数,SPP,SAM,PAN,DIoU-NMS
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值