题目
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 :
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
算法
动态规划
-
dp[i][0] 表示第 i 天交易完后手里没有股票的最大利润
-
dp[i][1] 表示第 i 天交易完后手里持有一支股票的最大利润(i 从 0 开始)。
class Solution {
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
}
}
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
- dp[i][0] 表示为今天没有持有股票。
- dp[i - 1][0] 表示昨天也没有
- dp[i - 1][1] + prices[i] - fee);表示昨天有,但是今天卖出去了
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][1]表示为今天持有股票。
- dp[i - 1][1] 表示昨天也持有股票
- dp[i - 1][1] + prices[i] - fee);表示昨天没有,但是今天买进来了
贪心
先来看看没有手续费的那道题目
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
// 贪心思路
public int maxProfit(int[] prices, int fee) {
if (prices == null || prices.length == 0) {
return 0;
}
int profit = 0;
int in_hand = prices[0];
for (int i = 1; i < prices.length; i++) {
if(prices[i] < in_hand){
in_hand = prices[i];
}else if(prices[i] > in_hand){
profit += prices[i] - in_hand;
in_hand = prices[i];
}
}
return profit;
}
public int maxProfit(int[] prices, int fee) {
if (prices == null || prices.length == 0) {
return 0;
}
int profit = 0;
int in_hand = prices[0];
for (int i = 1; i < prices.length; i++) {
if(prices[i] < in_hand){
in_hand = prices[i];
}else if(prices[i] - fee > in_hand){
profit += prices[i] - fee - in_hand;
in_hand = prices[i] - fee;
}
}
return profit;
}