逻辑损失函数为什么是凸函数

        逻辑损失函数(Logistic Loss Function),也称为对数损失函数(Log Loss)或二元交叉熵损失函数(Binary Cross-Entropy Loss),是凸函数。这是因为其二阶导数总是非负的。让我们通过数学推导来理解为什么逻辑损失函数是凸函数。

首先,回顾逻辑损失函数的定义:

L(y, \hat{y})=-[y \log (\hat{y})+(1-y) \log (1-\hat{y})]

其中,y是实际标签(0 或 1),\hat{y}是预测值(0 到 1 之间的概率)。

对于凸性分析,我们需要计算并分析函数的二阶导数。对预测值 \hat{y}求导

1.一阶导数

假设 y=1的情况下,损失函数变为:

L(\hat{y})=-\log (\hat{y})

\hat{y}求一阶导数:

\frac{d L}{d \hat{y}}=-\frac{1}{\hat{y}}

假设y=0的情况下,损失函数变为:

L(\hat{y})=-\log (1-\hat{y})

\hat{y} 求一阶导数:

\frac{d L}{d \hat{y}}=\frac{1}{1-\hat{y}}

综合起来,一般情况下,一阶导数为:

\frac{d L}{d \hat{y}}=-\frac{y}{\hat{y}}+\frac{1-y}{1-\hat{y}}

2.二阶导数

继续对\hat{y}求二阶导数:

\frac{d^2 L}{d \hat{y}^2}=\frac{y}{\hat{y}^2}+\frac{1-y}{(1-\hat{y})^2}

由于\hat{y} 是 0 到 1 之间的概率值,所以 \hat{y}>0 且 1−\hat{y}>。因此,\frac{y}{\hat{y}^2}\frac{1-y}{(1-\hat{y})^2}都是非负值,二阶导数也是非负值。

二阶导数非负性意味着凸性

        一个函数在其定义域内的二阶导数非负,则该函数是凸函数。这里 \frac{d^2 L}{d \hat{y}^2} \geq 0对所有 $\hat{y} \in(0,1)$都成立,因此逻辑损失函数$L(y, \hat{y})$ 是凸函数。

结论

        逻辑损失函数是凸函数,因为其二阶导数总是非负的。这一性质保证了逻辑回归在优化过程中能够找到全局最优解,而不会陷入局部最优解。因此,逻辑损失函数在二分类任务中被广泛使用,尤其是在逻辑回归和神经网络中。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值