FM模型(Factorization Machine,因子分解机)解析及举例

        FM模型(Factorization Machine,因子分解机)是一种强大的机器学习算法,广泛用于推荐系统、分类和回归任务。FM模型能够有效地处理高维稀疏数据,并捕捉特征之间的交互关系。以下是FM模型的详细介绍:

一、FM模型的基本概念

        FM模型通过分解特征矩阵来捕捉特征之间的二阶交互作用,解决了传统线性模型无法有效处理高维稀疏数据的问题。FM模型的基本公式如下:

                        $\hat{y}=w_0+\sum_{i=1}^n w_i x_i+\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j$

其中:

  • $\hat{y}$是预测值
  • $w_0$​ 是全局偏置
  • $w_i$ 是特征 $x_i$​ 的权重
  • $v_i$是特征 $x_i$的因子向量
  • $\left\langle v_i, v_j\right\rangle$表示因子向量$v_i$​ 和 $v_j$的内积,表示特征$x_i$$x_j$之间的交互作用

二、内积

       Factorization Machines (FM) 的一个核心特性是捕捉特征之间的二阶交互作用,而这些交互作用通过特征向量的内积(dot product)来表示。内积部分在 FM 模型中起着关键作用,因为它能够有效地建模特征之间的关系。下面我们来详细介绍一下内积部分。

1.内积的定义

       在 FM 模型中,特征向量的内积用于表示特征之间的二阶交互作用。具体来说,特征$x_i$$x_j$的交互作用由它们对应的因子向量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值