FM模型(Factorization Machine,因子分解机)解析及举例

        FM模型(Factorization Machine,因子分解机)是一种强大的机器学习算法,广泛用于推荐系统、分类和回归任务。FM模型能够有效地处理高维稀疏数据,并捕捉特征之间的交互关系。以下是FM模型的详细介绍:

一、FM模型的基本概念

        FM模型通过分解特征矩阵来捕捉特征之间的二阶交互作用,解决了传统线性模型无法有效处理高维稀疏数据的问题。FM模型的基本公式如下:

                        $\hat{y}=w_0+\sum_{i=1}^n w_i x_i+\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j$

其中:

  • $\hat{y}$是预测值
  • $w_0$​ 是全局偏置
  • $w_i$ 是特征 $x_i$​ 的权重
  • $v_i$是特征 $x_i$的因子向量
  • $\left\langle v_i, v_j\right\rangle$表示因子向量$v_i$​ 和 $v_j$的内积,表示特征$x_i$$x_j$之间的交互作用

二、内积

       Factorization Machines (FM) 的一个核心特性是捕捉特征之间的二阶交互作用,而这些交互作用通过特征向量的内积(dot product)来表示。内积部分在 FM 模型中起着关键作用,因为它能够有效地建模特征之间的关系。下面我们来详细介绍一下内积部分。

1.内积的定义

       在 FM 模型中,特征向量的内积用于表示特征之间的二阶交互作用。具体来说,特征$x_i$$x_j$的交互作用由它们对应的因子向量 $v_i$​ 和 $v_j$的内积表示:

$\left\langle v_i, v_j\right\rangle=\sum_{f=1}^k v_{i, f} \cdot v_{j, f}$

其中:

  • $v_i$​ 和 $v_j$ 是特征 $x_i$$x_j$的因子向量,向量维度为 k。
  • $v_{i, f}$ 和 $v_{j, f}$是因子向量$v_i$​ 和 $v_j$在第 f 维的分量。
  • $\left\langle v_i, v_j\right\rangle$表示因子向量 $v_i$​ 和 $v_j$的内积。

2.内积在 FM 模型中的作用

        FM 模型的基本公式中包含了内积部分,用于表示特征之间的二阶交互作用:

$\hat{y}=w_0+\sum_{i=1}^n w_i x_i+\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j$

        在这个公式中,内积 $\left\langle v_i, v_j\right\rangle$对应特征$x_i$$x_j$之间的交互作用权重。这部分的作用是通过特征向量的内积捕捉特征之间的关系,从而弥补传统线性模型无法捕捉特征交互作用的不足。

3.内积的计算

        为了高效地计算 FM 模型中的二阶交互项,我们可以利用矩阵分解的技巧。具体来说,计算所有特征对的二阶交互作用可以通过以下公式实现:

$\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j=\frac{1}{2}\left(\left(\sum_{i=1}^n v_i x_i\right)^2-\sum_{i=1}^n\left(v_i x_i\right)^2\right)$

其中:

  • $\left(\sum_{i=1}^n v_i x_i\right)^2$ 表示特征向量加权和的平方。
  • $\sum_{i=1}^n\left(v_i x_i\right)^2$表示特征向量分量平方和。

        这个公式通过分解计算,可以在 O(nk)的时间复杂度内完成,而不需要显式计算所有特征对的交互作用,从而大大提高了计算效率。

4.内积的优点

  • 高效计算:通过矩阵分解技巧,FM 模型能够高效地计算特征之间的二阶交互作用,适用于大规模高维数据。
  • 特征交互捕捉:内积部分使得 FM 模型能够显式建模特征之间的交互作用,而不仅仅是独立特征的线性组合。
  • 参数共享:因子向量的分解形式使得不同特征之间共享参数,从而能够更好地泛化到未见过的特征组合。

5.内积示例:电影推荐系统

假设我们有一个电影推荐系统,其中用户对电影的评分数据是稀疏的。我们有以下数据:

  • 用户:User1, User2
  • 电影:Movie1, Movie2
  • 用户特征:Age, Gender
  • 电影特征:Genre

为了简单起见,我们假设每个特征的值如下:

  • User1: Age=25, Gender=Male
  • User2: Age=30, Gender=Female
  • Movie1: Genre=Action
  • Movie2: Genre=Romance
5.1特征向量表示

首先,我们将特征表示为一个稀疏向量(one-hot encoding):

  • User1: Age=25,Gender=Male,Age=30,Gender=Female -> 1,0,0,1
  • User2: Age=25,Gender=Male,Age=30,Gender=Female -> 0,1,1,0
  • Movie1: Genre=Action,Genre=Romance -> 1,0
  • Movie2: Genre=Action,Genre=Romance -> 0,1
5.2因子向量表示

        我们假设每个特征都有一个对应的因子向量,维度为2(为了简化计算)。假设如下:

  • Age=25: v1=[0.2,0.8]
  • Age=30: v2=[0.6,0.4]
  • Gender=Male: v3=[0.1,0.9]
  • Gender=Female: v4=[0.7,0.3]
  • Genre=Action: v5=[0.5,0.5]
  • Genre=Romance: v6=[0.3,0.7]
5.3计算特征交互作用

        假设我们要计算User1对Movie1的评分,特征向量为1,0,0,1,1,0。FM模型中的二阶交互项表示为:

$\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j$

        这里, $x_i$是特征值,要么是0(特征不存在),要么是1(特征存在)。因此我们只需要考虑那些 $x_i$$x_j$ 为1的情况,在这个特征向量中,非零的特征索引是1、4和5。因此,交互项为

$\left\langle v_i, v_j\right\rangle$$x_i$$x_i$

我们具体计算内积:

        1).\langle v_1, v_4 \rangle: v1=[0.2,0.8], v4=[0.7,0.3]

        \langle v_1, v_4 \rangle = 0.2 * 0.7 + 0.8 * 0.3 = 0.14 + 0.24 = 0.38

        2).\langle v_1, v_5 \rangle: v1=[0.2,0.8], v5=[0.5,0.5]

        \langle v_1, v_5 \rangle =  0.2 * 0.5 + 0.8  * 0.5 = 0.1 + 0.4 = 0.5  

        3).\langle v_4, v_5 \rangle:v4=[0.7,0.3],v5=[0.5,0.5]

        \langle v_4, v_5 \rangle=0.7 * 0.5+0.3 * 0.5=0.35+0.15=0.5

5.4完整的预测公式

        FM模型的完整公式包括线性项和全局偏置项:  

$\hat{y}=w_0+\sum_{i=1}^n w_i x_i+\sum_{i=1}^n \sum_{j=i+1}^n\left\langle v_i, v_j\right\rangle x_i x_j$

        假设全局偏置 $w_0$=0.5,特征权重 $w_i$为0(为了简化),则:

$\hat{y}$=0.5+1.38=1.88

5.5总结

        通过这个例子,我们重新正确地计算了FM模型中的内积部分,展示了如何使用这些内积来捕捉特征之间的二阶交互作用。FM模型能够有效地处理高维稀疏数据,并在推荐系统等任务中表现出色。

三、FM模型的训练

        FM模型的训练过程通常使用梯度下降法进行参数优化。常见的优化算法包括随机梯度下降(SGD)和交替最小二乘法(ALS)。

四、FM模型的应用

        FM模型在许多领域都有广泛的应用,尤其在推荐系统中非常受欢迎。以下是一些具体的应用场景:

  • 推荐系统:在推荐系统中,FM模型可以用于预测用户对物品的评分,并根据预测评分生成个性化推荐。
  • 广告点击率预测:FM模型可以用于预测用户点击广告的概率,帮助广告平台优化广告投放策略。
  • 分类和回归任务:FM模型也可以应用于一般的分类和回归任务,例如用户行为预测、信用评分等。

五、FM模型的优点

  • 有效处理高维稀疏数据:FM模型能够处理具有高维度和稀疏性的输入数据,这在推荐系统中特别有用。
  • 捕捉特征之间的交互作用:FM模型能够显式建模特征之间的二阶交互作用,这比简单的线性模型更强大。
  • 高效的参数学习:FM模型通过因子分解技术,使得参数学习变得高效,即使在大规模数据上也能快速收敛。
  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值