FM模型(Factorization Machine,因子分解机)是一种强大的机器学习算法,广泛用于推荐系统、分类和回归任务。FM模型能够有效地处理高维稀疏数据,并捕捉特征之间的交互关系。以下是FM模型的详细介绍:
一、FM模型的基本概念
FM模型通过分解特征矩阵来捕捉特征之间的二阶交互作用,解决了传统线性模型无法有效处理高维稀疏数据的问题。FM模型的基本公式如下:
其中:
是预测值
是全局偏置
是特征
的权重
是特征
的因子向量
表示因子向量
和
的内积,表示特征
和
之间的交互作用
二、内积
Factorization Machines (FM) 的一个核心特性是捕捉特征之间的二阶交互作用,而这些交互作用通过特征向量的内积(dot product)来表示。内积部分在 FM 模型中起着关键作用,因为它能够有效地建模特征之间的关系。下面我们来详细介绍一下内积部分。
1.内积的定义
在 FM 模型中,特征向量的内积用于表示特征之间的二阶交互作用。具体来说,特征和
的交互作用由它们对应的因子向量