逻辑回归损失函数通常是凸函数(附平方差损失的非凸证明以及交叉熵损失函数求导)

Q:为什么逻辑回归损失函数往往要求是凸函数?(此处凸函数是指下凸,国内和国外凸函数的标准不一样,是相反的,吴恩达的机器学习课程凸函数是指下凸)

A:如果损失函数是非凸的,使用梯度下降法优化时,最后得到的可能只是局部最优解,而非全局最优解。

--------------------------------------------------------------------------------------------------------------------------------

平方差损失非凸证明

做优化时,最容易想到的loss function便是平方差损失:(y-\hat{y})^{2},看起来是可行的,但实际并非如此,因为平方差损失是非凸函数。

证明函数的非凸性只要证明这个函数的二阶导不恒>0

 先验条件:线性拟合函数 z = wx + b ,二分类问题z值需要归一化到[0,1],即使用sigmoid激活函数 \large \delta (z) =\frac{1}{1+e^{-z}}        (\delta (z)\hat{y}

平方差损失函数:  \large L=(y-\delta (z))^{2}

以对权重求偏导举例

,所以后三项乘积恒>=0。 只需要判断

y的范围为[0,1],假设y=0, 上式满足>0的条件为\large \delta (z)<2/3    ,所以当\large \delta (z)>2/3时,二阶导为负值,不满足凸函数的性质。

常用logistic损失函数\large L=-(ylog\hat{y}+(1-y)log(1-\hat{y}))   

手推了一下,w的二阶偏导为  (此处log我是以2为底计算导数,吴恩达的视频中log相当于ln,以e为底,不要在意这些细节hhh),显而易见,二阶导恒大于0。 (补充知识点: 

通俗易懂地举例验证一下此损失函数的可行性,假设y=1, 损失函数只剩第一项 \large -log\hat{y},使这一项尽可能小,那么\large {\hat{y}}尽可能大,而\large \hat{y}是经sigmoid激活的函数,范围为0-1,\large \hat{y}只能无限接近1。即真实值为1时,预测值也要无限接近1,loss function才会尽可能地小。

贴一张以e为底的交叉熵损失函数手写求导图

题外话:csdn自带的公式编辑器太难用了,用office编辑再复制过来公式看起来很假,所以各位大佬们都是怎么编辑公式的==

  • 10
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值