空间分析

本文介绍了空间分析中的多种方法,包括Kriging插值用于未知点属性预测,Kernel核密度分析利用高斯核函数进行插值,最近邻分析在城市地理学的应用,Getis-Ord Gi*热点分析和LISA用于探测空间聚集,以及各种空间回归模型如GWR和Geodetector在影响因素分析中的作用。
摘要由CSDN通过智能技术生成

Kriging插值:

Kriging的定义已经很明确的说明了通过已知点的属性来预测未知点的属性,所用的函数是一个不停迭代动态的函数直到达到最优解。比较重要的是体现出对于未知区域的属性预测。

Kernel核密度:

单纯的进行密度分析,Kernel核密度分析与另外两个点密度分析,线密度分析的不同在于Kernel核密度分析利用了高斯核函数进行插值。

最近邻分析:

Clark和Evans(1954)提出最近邻概念,King(1969)将这种方法引入城镇聚落的空间分布分析。此后,NNA逐渐发展成为一种人文地理特别是城市地理学的空间分析方法。

Getis-Ord Gi* 热点分析:

这是属于地统计分析中用来探测冷点和热点的工具。Arcmap可实现。

LISA(Local Indicators of Spatial Association)局部空间自相关分析:

1996年Anserlin提出,地统计分析目前全世界公认最牛b的探测聚集的的工具,通过四个指标来表示。ArcMap可实现,不过据说算法是错误的,得出来的结果会与Geoda的不同。

OLS,SEM(空间误差模型),SLM(空间滞后模型):</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值