Single-Network Whole-Body Pose Estimation ICCV2019

openpose plus

Single-Network Whole-Body Pose Estimation ICCV2019


与openpose相比,速度准确度都有提升。在结构上,并行变串行。

网络流程:输入RGB图片----  VGG  ----  得到特征图F ---- CNN ---- 预测肢体向量热图L ---- 与F融合进入下一阶段 ---- CNN ---- 预测关节点热图S ---- S进行NMS ---- 图匹配 ---- 姿态

关于提升速度:

网络结构并行变串行,参数量明显下降。

关于提升精度:

1,对于人脸和手,分辨率通常较低,导致定位不准,作者提升了输入分辨率。姿态估计任务定位身体关节点的性能受感受野大小的影响,感受也越大越能感知人整个的身体结构,所以输入分辨率越大,网络应该更深,来维持较高的感受野。

2,将关节点分成四个集合:人脸,手,身体和脚,肢体向量也做同样处理。处理关节点数量不平衡,可以mask,可以扩增少出现关节点;为多任务训练,构建多个数据集。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值