题目描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
2
12
28
3
21
10
5
样例输出
1
0
#include<iostream>
using namespace std;
int a[100];
int n=1;
int count(int i,int sum)
{
if(sum==0){return 1;} //找到一组和为sum的组合数;
if(i==n||sum<0) return 0;//i==n说明没有其他的数来组合,sum<0说明组合不出;
return count(i+1,sum-a[i])+count(i+1,sum);//从数组的第i为开始,包含a[i],和不包含;
}
int main()
{
while(cin>>n){
for(int i=0;i<n;i++)
cin>>a[i];
cout<<count(0,40)<<endl;
}
return 0;
}