自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 再见 REF30、MCP15、—高性价比基准TPR33 / TPR35 他来了!

思瑞浦TPR33/TPR35基准芯片以高性价比解决模拟电路选型痛点,具备0.15%初始精度、30ppm/℃温漂等硬核参数,通过2亿片出货验证可靠性。该系列覆盖工业、医疗、能源等多场景需求,TPR35更支持-40℃~125℃宽温工作,可pin2pin替代进口型号。其规模效应带来的成本优势,使高精度与高性价比得以兼得,特别适用于ADC参考、过程控制等对稳定性要求严苛的领域。

2025-10-23 15:19:34 258

原创 选LDO靠经验、选运放靠公式、选基准靠信任为什么我们推荐基准TPR33、TPR35、TPR43XX

我们对于工业过程控制应用中推荐TPR33/TPR35,在医疗仪器应用中推荐TPR50/TPR33,压力和温度变送器推荐TPR33,太阳能逆变应用推荐TPR33/TPR43X,储能应用中推荐TPR33/TPR43X

2025-10-23 00:14:12 1025

原创 思瑞浦基准电压全覆盖八大场景:精密采集、测试设备、工业控制、医疗、传感器、电池检测、太阳能、储能,一文讲清选型逻辑!

【基准电压源选型指南】思瑞浦针对八大应用场景推出差异化解决方案:精密采集/测试设备推荐高精度TPR50/70系列(0.05%初始精度,2.5ppm/℃温漂);工业控制/医疗设备选用TPR31/33系列(15-36V宽输入,工业级稳定);太阳能/储能系统适配TPR43X(高压输入支持)。选型需重点考量初始精度、温漂、噪声、长期稳定性及输入电压范围五大指标,Series型(精度优)与Shunt型(结构简)各有适用场景。本文提供场景化选型表格,助您快速匹配最优基准方案。

2025-10-17 16:49:13 787

原创 基准电压选型全攻略:精密采集、测试设备、工业控制、医疗、传感器、电池检测、太阳能、储能,到底怎么选?(一)

思瑞浦推出高性能基准电压芯片矩阵,覆盖从入门到高端应用场景,实现国产芯片性能突破。TPR70A系列温度系数达0.1ppm/℃,10V高压输出的TPR70A0、36V输入的TPR36Q等产品满足工业自动化、医疗设备和车载系统等严苛需求。产品线分为高精度Series系列(如0.05%初始精度的TPR50/70)和宽压Shunt系列(如车规级TPR433B-S),支持pin-to-pin替代国际大厂型号。思瑞浦已构建从性价比方案到实验室级标准的完整布局,标志着国产基准电压芯片进入性能超越阶段。

2025-10-17 16:44:45 1115

原创 再见 TI ADI 基准源REF50、ADR45xx TPR50 他来了测得准、全温不飘、p2p替换!

摘要:思瑞浦TPR50基准源在高精度ADC应用中表现优异,实测温度系数低至1.48-2.22ppm/°C,1000小时漂移<40ppm,噪声3μVpp/V,关键指标媲美TI/ADI同类产品。其稳定性能源自成熟设计与工艺控制,SOP-8/MSOP-8封装兼容主流方案,适合工业自动化、医疗设备等对长期稳定性要求严苛的场景。国产化方案在保持性能同时提供更优供应链保障,已实现超千万片出货验证。

2025-10-17 16:40:49 584

转载 task5 目标检测

参考:GitHub - datawhalechina/unusual-deep-learning: 水很深的深度学习

2021-12-03 09:27:54 139

转载 task 4 cnn

参考:GitHub - datawhalechina/unusual-deep-learning: 水很深的深度学习

2021-12-03 09:24:35 138

原创 python下根据csv将数据集按照类别分文件夹放置

import pandas as pdimport osimport shutil#读取文件file=open("/Volumes/creazy_boy/kt/train1.csv","rb")list=pd.read_csv(file)list["FILE_ID"]=list["data"]#创建文件夹,进行分类for i in range(1,4): label_dir = os.path.join('A'+"{:02}".format(i)) if not os..

2021-10-17 21:21:52 472

原创 Task 01 Java 环境安装

java 环境已配好 开始起飞下面是安装教程目录1.3 Windows环境安装1.3.1 下载JDK安装包1.3.2 安装JDK3. 配置JAVA环境4. 检验安装是否成功1.3 开发工具.3 Windows环境安装1.3.1 下载JDK安装包官网下载:https://www.oracle.com/cn/java/technologies/javase/javase-jdk8-downloads.html百度云盘下载的适用于window64位计算机。.

2021-07-13 22:26:36 253

原创 pytorch -costom dataset

import osimport pandas as pdimport torchimport torch.nn as nnfrom torch.utils.data import Dataset, DataLoaderimport torchvisionfrom torchvision import transformsfrom PIL import ImagePATH = '../input/cassava-leaf-disease-classification'train_csv.

2021-07-07 20:51:45 137

原创 生成txt

import osdef generate(dir,label): files = os.listdir(dir) files.sort() print ('****************') print ('input :',dir) print ('start...') listText = open(dir+'/'+'list.txt','w') for file in files: fileType = os.path.s.

2021-07-02 21:51:36 134

原创 python 将多个文件夹合成一个文件夹

import osimport shutilimport osimport shutilsource_path = os.path.abspath(r'') # 源文件夹target_path = os.path.abspath(r'') # 目标文件夹if not os.path.exists(target_path): # 目标文件夹不存在就新建 os.makedirs(target_path)if os.path.exists(source_path): # 源.

2021-06-28 21:28:09 948

转载 moco源码

gpu_info = !nvidia-smi -i 0gpu_info = '\n'.join(gpu_info)print(gpu_info)from datetime import datetimefrom functools import partialfrom PIL import Imagefrom torch.utils.data import DataLoaderfrom torchvision import transformsfrom torchvision.datas.

2021-06-23 20:30:47 1166 1

原创 linux

Centos7 su 鉴定故障解决方法以前用得好好的su root命令,在某台linux服务器上不能用了,报“su:鉴定故障”直接用root用户登录输入以下命令sudo passwd重置一下root密码再用非root用户登录 输入sudo su root竟然就成功了...

2021-06-20 01:07:22 128

转载 linux系统安装

1、用VScode远程连接云服务器个人感觉用vscode远程连接华为云进行开发会比较方便1在VScode扩展里搜索并安装Remote SSH插件依次点击右侧远程资源管理器图标、小齿轮,选择第一项其内容按照如下格式填写Host huaweiyun//可以任意填写 HostName 华为云的弹性公网IP地址 User 云服务器用户名123保存后右侧会出现远程云服务器,点击右侧图标连接云服务器输入密码登录ps:云服务器需要开机才可连接成功3. 由于是直接使用root账号...

2021-06-14 23:36:48 482

转载 HMM

#HMM马尔可夫链(英语:Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain,缩写为DTMC),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。隐马尔可夫模型包含5个要素:初始概率分布,状态转移概率分布,观测概率分布,所有可能状态的集合,所有可能观测的集合。隐马尔可夫模型HMM是结构最简单的动态贝叶斯网络,是有向图模型。#注意要点##两点马尔

2021-05-23 21:16:01 123

原创 智慧海洋Task02 数据分析

此部分为智慧海洋建设竞赛的数据分析模块,通过数据分析,可以熟悉数据,为后面的特征工程做准备,欢迎大家后续多多交流。赛题:智慧海洋建设数据分析的目的:EDA的主要价值在于熟悉整个数据集的基本情况(缺失值、异常值),来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。了解特征之间的相关性、分布,以及特征与预测值之间的关系。为进行特征工程提供理论依据。项目地址:https://github.com/datawhalechina/team-learning-data-mining/tree

2021-04-16 20:41:35 215

原创 智慧海洋

智慧海洋竞赛介绍Task01• 本赛题围绕“智慧海洋建设,赋能海上安全治理能力现代化”展开。而船舶避碰终端(AIS)、北斗定位终端等通信导航设备的应用,给海上交通和作业带来了极大便利,但同时存在设备信息使用不规范造成的巨大人身和财产损失,给海上安全治理带来了新的挑战。本赛题基于船舶轨迹位置数据对海上目标进行智能识别和作业行为分析,要求选手通过分析渔船北斗设备位置数据,得出该船的生产作业行为,具体判断出是拖网作业、围网作业还是流刺网作业。同时,希望选手通过数据可视分析,挖掘更多海洋通信导航设备的应用价值。

2021-04-14 20:06:29 475 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除