Pytorch的数据操作

import torch
'''***********************
*   代码参考来自:https://github.com/ShusenTang/Dive-into-DL-PyTorch/blob/master/docs/chapter02_prerequisite/2.2_tensor.md
***********************'''
## 创建tensor
x = torch.empty(5,3)
print(x)

x = torch.rand(5,3)
print(x)

## 自定义数据类型
x = torch.zeros(5,3, dtype=torch.long)
print(x)


## 根据数据创建
x = torch.tensor([5.5, 3])
print(x)

## 通过现有的Tensor来创建
x = x.new_ones(5,3, dtype=torch.float64)# 返回的tensor默认具有相同的torch.dtype和torch.device
print(x)

x = torch.randn_like(x, dtype=torch.float)
print(x)

## 可以通过shape或者size()来获取Tensor的形状
print(x.size())
print(x.shape)
## 返回的torch.Size 是一个tuple,支持所有的tuple的操作

## Tensor的基本操作

# 加法
y = torch.rand(5,3)
print(x+y)
print(torch.add(x, y))

result = torch.empty(5,3)
torch.add(x, y, out=result)
print(result)

y.add_(x)
print(y)
# 注:PyTorch操作inplace版本都有后缀_, 例如x.copy_(y), x.t_()

## 索引
# 类似NumPy的索引操作来访问Tensor的一部分,需要注
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值