PyTorch中to(self.device)在哪一阶段使用

通常来说,to(self.device) 在模型初始化后立即使用,并且在每次处理数据批次之前也要使用,以移动模型、输入数据和目标标签到想要使用的设备上。这样可以确保所有的计算都在同一设备上进行,避免出现设备不一致导致的错误。

模型初始化阶段
在初始化模型之后,应该立即将模型发送到指定的设备。这样可以确保模型的参数和缓存都在正确的设备上。这一步通常在主训练循环开始之前完成。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  
model = MyNeuralNetwork()  
model.to(device)

数据处理阶段
在每次将数据送入模型进行前向传播之前,也需要将数据移动到相同的设备上。这通常发生在训练循环或评估循环内部。

#dataloader 是一个提供数据批次的迭代器,inputs 和 targets 是从数据批次中获取的数据和标签。
#inputs.to(device) 和 targets.to(device) 将这些数据移动到与模型相同的设备上。
for batch in dataloader:  
    inputs, targets = batch  
    inputs, targets = inputs.to(device), targets.to(device)  
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个使用tqdm的PyTorch训练示例代码。在这个例子,我们使用CIFAR-10数据集进行图像分类任务。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader from tqdm import tqdm # 定义超参数 num_epochs = 10 batch_size = 128 learning_rate = 0.001 # 加载数据集并进行预处理 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.fc1 = nn.Linear(4*4*128, 512) self.fc2 = nn.Linear(512, 10) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(2, 2) def forward(self, x): x = self.relu(self.conv1(x)) x = self.maxpool(x) x = self.relu(self.conv2(x)) x = self.maxpool(x) x = self.relu(self.conv3(x)) x = self.maxpool(x) x = x.view(-1, 4*4*128) x = self.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化模型和损失函数 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = CNN().to(device) criterion = nn.CrossEntropyLoss() # 定义优化器 optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): # 训练阶段 model.train() train_loss = 0.0 train_correct = 0 for data, target in tqdm(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) pred = output.argmax(dim=1, keepdim=True) train_correct += pred.eq(target.view_as(pred)).sum().item() train_loss /= len(train_loader.dataset) train_acc = train_correct / len(train_loader.dataset) # 测试阶段 model.eval() test_loss = 0.0 test_correct = 0 with torch.no_grad(): for data, target in tqdm(test_loader): data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() * data.size(0) pred = output.argmax(dim=1, keepdim=True) test_correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_acc = test_correct / len(test_loader.dataset) # 输出训练和测试结果 print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}' .format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc)) ``` 在上述代码,我们使用了tqdm包装了训练和测试的数据加载器,从而实现了进度条的显示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值