SPSS用途

SPSS:
大型数据用于数据挖掘,从频数来进行分析;
小型数据范围:60-3000;大型数据范围:万到百亿

DM(支持向量机,决策树等):必须支持万级甚至亿级以上才能用的数据分析
数据库达到T级别之后,数据性能变慢,则此时大部分数据会转而贮存在云服务上

03-08
### 使用SPSS进行数据分析 #### 数据准备阶段 在启动任何分析之前,确保数据集已经准备好并导入到 SPSS 中。通常情况下,CSV 或 Excel 文件可以直接通过文件菜单下的“打开”选项加载[^1]。 #### 基本描述性统计分析 对于初步理解数据特征而言,执行基本的描述性统计是非常重要的一步。可以通过`Analyze -> Descriptive Statistics -> Frequencies...`来查看频率分布表;而要获取更详细的统计数据如平均数、标准差等,则可以选择`Descriptives...`命令。 #### 探索变量间关系——相关性分析 为了探索不同变量之间的关联程度,可以利用Pearson, Spearman或Kendall's tau-b等相关系数来进行衡量。具体操作路径为:`Analyze -> Correlate -> Bivariate...`. 对于分类变量间的联系强度评估,还可以考虑计算Phi值、Cramer’s V 和 Lambda 系数值,并对其进行显著性测试以判断是否存在实际意义的关系[^2]. ```python # Python模拟调用SPSS语法实现简单线性回归模型构建(仅作示意用途) import spss spss.Submit(''' REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT income /METHOD=ENTER age education. ''') ``` #### 构建预测模型——多元线性回归案例 当目标是从多个自变量中找出影响因变量的关键因素时,可采用多元线性回归方法。进入`Analyze -> Regression -> Linear...`, 设置好相应的输入字段后点击OK即可完成一次基础版的多因子回归分析. #### 结果解释与可视化展示 最后但同样重要的是,学会解读输出结果并对所得结论做出合理解释。除了表格形式的结果外,图形化表示往往能更加直观地传达信息给读者。因此建议充分利用Chart Builder等功能创建各类图表辅助说明研究发现.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值