分类与回归的区别在于输出的类型:
分类:分类问题输出的是离散型变量,比如(-1,+1),输出一种类别,可看做定性输出
回归:输出的是连续型变量,可看作定量输出
回归优化的对象是让平方误差最小
分类回归的对象是让交叉熵最小
异或问题:可看作单位正方形的四个角,响应输入模式为(0,0),(0,1),(1,1),(1,0);第一个和第三个属于类0,输入模式(0,0),(1,1)是单位正方形的两个相对的角,但他们产生相同的结果0,而另外两个是单位正方形的另一对相对的角,但它们属于类1
神经网络
分类与回归的区别在于输出的类型:
分类:分类问题输出的是离散型变量,比如(-1,+1),输出一种类别,可看做定性输出
回归:输出的是连续型变量,可看作定量输出
回归优化的对象是让平方误差最小
分类回归的对象是让交叉熵最小
异或问题:可看作单位正方形的四个角,响应输入模式为(0,0),(0,1),(1,1),(1,0);第一个和第三个属于类0,输入模式(0,0),(1,1)是单位正方形的两个相对的角,但他们产生相同的结果0,而另外两个是单位正方形的另一对相对的角,但它们属于类1
神经网络