大模型-提示词设计策略与机制

摘要

       本文基于《【DeepSeek】【清华大学】第一弹:DeepSeek 从入门到精通.pdf》展开梳理,对文档内有关提示词设计策略与机制的内容进行了系统性总结。文档从理论层面总结了提示词设计的底层逻辑,同时给出了相关实操案例。文本提炼出其中关于提示词设计的关键策略,涵盖提示词策略的理论基础、实施步骤和应用示例。

语用意图分析(PIA):解码内容生成目的

        PIA 建立在语用学和言语行为理论的基础上,通过分析任务的语用意图,为AI 设定明确的任务目标,并提出了以下分类:

陈述型:

  • 含义:陈述型任务旨在传达信息,对事物的状态、属性、事件等进行描述或断言。其目的是让接收者知晓某些事实。

  • 举例:“地球围绕太阳公转。” “今天的气温是 25 摄氏度。”

  • 应用场景:在知识问答系统中,当 AI 需要提供事实性答案时,可能会执行陈述型任务。例如用户询问 “珠穆朗玛峰的海拔是多少?”,AI 回复 “珠穆朗玛峰的海拔约为 8848.86 米”,这就是一个典型的陈述型任务执行过程。在信息检索类应用中,AI 从数据库中提取信息并呈现给用户,这一过程也涉及陈述型任务,如新闻推送应用向用户展示最新的新闻标题和内容。

表达型:

  • 含义:表达型任务侧重于抒发情感、态度、观点等,并非传达客观事实,而是让接收者了解发送者的主观感受。​

  • 举例:“我非常喜欢这部电影。” “今天的天气让我心情格外舒畅。”​

  • 应用场景:在社交媒体分析中,AI 需要分析用户发布内容的情感倾向,这就涉及对表达型语句的理解。比如,当分析一条微博 “今天遇到了一件超开心的事,太棒啦!”,AI 可以识别出其中积极的情感表达。在客服聊天机器人中,如果用户表达不满,如 “我对这次的服务很失望”,机器人需要理解这种表达型语句,并采取相应的安抚措施,这也是在处理表达型任务。

指令型:

  • 含义:指令型任务是向接收者发出请求、命令、建议等,期望接收者按照指令采取行动。​

  • 举例:“请帮我倒一杯水。” “打开窗户。” “你应该多锻炼身体。”​

  • 应用场景:智能家居控制系统中,用户通过语音指令 “打开客厅的灯”,AI 接收到这个指令型任务后,控制相应的设备执行开灯操作。在工业自动化场景中,工程师向 AI 系统下达 “调整生产线速度至每分钟 50 个产品” 的指令,AI 负责协调设备完成速度调整,这都是指令型任务的实际应用。

宣告型:

  • 含义:宣告型任务通过语言表达来改变某种状态或创建新的事实。一旦宣告,相关的状态或事实就被确立。​

  • 举例:法官宣判 “被告有罪。” 主持人宣布 “会议开始。”​

  • 应用场景:在电子政务系统中,政府部门发布政策公告 “自下个月起,实施新的税收政策”,这就是一种宣告型任务,会对社会经济状态产生实际影响。在游戏开发中,当游戏系统宣布 “游戏结束,玩家胜利” 时,改变了游戏的当前状态,这也属于宣告型任务的范畴。

承诺型:

  • 含义:承诺型任务表达了说话者对未来行动的承诺,让接收者相信说话者会按照承诺去做。​

  • 举例:“我保证明天完成这项工作。” “我承诺会按时还款。”​

  • 应用场景:在项目管理系统中,团队成员对项目经理承诺 “我会在本周内完成这个模块的开发”,AI 可以跟踪和记录这些承诺,并提醒相关人员履行。在商业合同签订场景中,合同条款中的承诺部分,如 “乙方承诺在规定时间内交付产品”,AI 可以辅助合同管理,监控承诺的执行情况。

PIA 实施步骤

  1. 识别主要语用意图:确定任务的首要目的

  2. 分析次要语用意图:识别可能的辅助目的

  3. 评估语用意图的强度:量化每种意图的强度

  4. 构建语用意图矩阵:创建语用意图及其强度的矩阵

应用示例

        假设需要攥写一篇关于“气候变化”的文章,目的是“增强公众意识并促进行动”:

任务目标:创作一篇关于气候变化的文章,旨在提高公众意识并促进行动。
主要语用意图:
(1)陈述型(强度8):提供可靠的气候变化数据和科学发现。
(2)指令型(强度7):鼓励读者采取具体的环保行动。
(3)表达型(强度6):传达对气候变化威胁的紧迫感。
请确保文章:
包含来自权威来源的最新气候数据
解释气候变化的原因和影响
提供至少5个读者可以立即采取的行动建议
使用引人入胜的语言来激发读者的环保意识。

主题聚焦机制(TFM):锁定核心内容

        TFM 借鉴了认知语言学中的“原型理论”和框架语义学“,可开发以下技巧:

  • 主题原型构建:确定主题的核心特征和典型例子。比如对于 “水果” 主题,核心特征为富含维生素、可食用的植物果实等,典型例子有苹果、香蕉等。

  • 语义框架设置:创建与主题相关的概念网络。仍以 “水果” 为例,构建的概念网络可以包括水果的生长环境(果园等)、加工产品(果汁、果脯) 、营养成分(维生素 C、纤维素) 等概念及其相互关系。

  • 重点梯度建立:设定主题相关性的层级结构。在 “水果” 主题中,核心水果品类如苹果、橙子等相关性层级最高;水果加工制品,像水果罐头、水果蛋糕等相关性层级稍低;与水果种植相关的工具、技术等相关性层级更低 。

TFM 实施步骤

  • 定义主题原型:列出主题的关键特征和代表性例子

  • 构建语义框架:创建与主题相关的概念图

  • 设置重点梯度:按重要性排序相关概念和子主题

  • 创建主题引导符:设计特定的关键词或短语来保持主题聚焦

应用示例

1. 主题原型

  • 关键特征:全球变暖、极端天气、海平面上升、生态系统变化

  • 代表性例子:北极冰盖融化、热带雨林减少、珊瑚白化

2. 语义框架

3. 重点梯度

  • 气候变化的科学证据

  • 当前和预期的影响

  • 减缓和适应策略

  • 个人和集体行动的重要性

4. 主题引导符

  • 主要关键词:气候变化、全球变暖、环境保护

  • 次要关键词:碳排放、可再生能源、可持续发展

细节增强策略(DES):深化内容质量

        DES 整合了认知叙事学和信息处理理论,开发了以下策略:

  • 多模态描述:运用文本、图像、音频、视频等多种形式,全面且生动地呈现信息,增强理解与记忆。

  • 微观 - 宏观连接:既关注细节信息,又构建整体框架,帮助从局部到整体把握内容,理解局部与整体的关系。

  • 对比强化:通过对比相似或相反的信息,突出特征与差异,加深对关键内容的理解和辨别。

  • 时空定位:借助时间线和空间信息,为信息赋予时空背景,让信息更具逻辑性和连贯性。

  • 数据可视化:将抽象的数据转化为图表、图形等直观形式,便于快速理解数据规律和趋势。

DES 实施步骤

  1. 识别关键概念:确定需要详细阐述的核心想法

  2. 设计细节矩阵:为每个关键概念创建多维度的细节要求

  3. 构建微观-宏观桥接:设计连接具体事例和抽象概念的提示

  4. 创建感官描述指南:为抽象概念设计具体的感官描述要求

  5. 制定数据展示策略:规划如何将数据转化为生动的叙述或可视化形式

应用示例

        为了使生成的气候变化文章变得更加深度和细节,可以利用DES(Detailed Explanation Strategy) 来构建一个关键概念细节矩阵。

跨域映射机制(CMM):激发创新思维

        CMM 的理论基础借鉴了认知语言学中的概念隐喻理论和认知科学中的类比推理方法论:

  • 结构映射:在概念隐喻和类比推理中,结构映射是指将源域的结构特征映射到目标域上,使得目标域能够借助源域的结构来理解和构建自身的概念体系。

  • 属性转移:把源域的某些特定属性赋予目标域,这些属性的转移有助于目标域更生动、具体地被理解,同时也丰富了目标域的概念内涵。

  • 关系对应:强调源域和目标域之间关系的相似性,通过建立这种对应关系,人们可以利用对源域关系的熟悉来理解目标域中相应的关系,从而实现认知的拓展和深化。

  • 抽象模式提取:从具体的源域和目标域实例中提取出共同的抽象模式或结构,这种抽象模式具有更广泛的适用性和概括性,能够帮助人们在不同领域之间建立起深层次的联系,促进知识的迁移和创新。

CMM 实施步骤

  • 源域选择:根据任务选择合适的类比源域

  • 映射点识别:确定源域和目标域间关键对应点

  • 类比生成:创造性地将源域概念应用于目标域

  • 类比细化:调整和优化类比,确保其恰当性和新颖性

应用示例

任务:创作一篇探讨现代网络安全策略的文章,运用人体免疫系统作为核心
类比。
(1)开篇以简洁的方式介绍人体免疫系统和网络安全系统的相似性,为整
篇文章设定基调。
(2)逐层展开类比:
a.将防火墙和访问控制比作皮肤和黏膜,解释它们如何作为第一道防线。
b.描述入侵检测系统如何像白细胞一样在网络中“巡逻”,识别和应对威胁。
c.解释签名式防御如何类似于抗体,能够快速识别和中和已知威胁。
d.比较系统隔离和清理过程与人体发烧的相似性,都是为了控制“感染”扩散。
e.讨论威胁情报数据库如何类似于免疫记忆,使系统能够更快地应对重复出现的威胁。
(3)深入探讨启示:
a.分析免疫系统的适应性如何启发自适应安全系统的设计。
b.探讨免疫系统的分层防御策略如何应用于网络安全的纵深防御概念。
c.讨论过度免疫反应(如过敏)可能对应的网络安全问题(如误报或过度限制)。
(4)创新思路:
a.提出“数字疫苗”概念,探讨如何通过模拟攻击来增强系统抵抗力。
b.讨论“网络卫生”概念,类比个人卫生如何预防疾病。
c.探索“数字共生”理念,类比人体中的有益菌群,讨论如何利用良性AI来增强网络安全。
(5)挑战与展望:
a.分析这种类比的局限性,指出人体免疫系统和网络安全系统的关键差异。
b.展望未来:讨论如何进一步借鉴生物系统的其他特性来增强网络安全。
注意:在使用类比时,应保持科学准确性,避免过度简化复杂的技术概念。确保文章既
生动有趣,又具有实质性的技术深度。

概念嫁接策略(CGS):创造性融合

        CGS 借鉴了认知科学中的概念整合理论,概念嫁接策略的基本构成如下:

  • 输入空间定义:明确要融合的两个或多个概念领域

  • 通用空间识别:找出输入空间之间的共同特征

  • 选择性投射:从输入空间选择相关元素进行融合

  • 涌现结构构建:在融合空间中创造新的、创新结构

CGS 实施步骤

  • 选择输入概念:确定要融合的核心概念

  • 分析概念特征:列出每个输入概念的关键特征和属性

  • 寻找共同点:识别输入概念之间的共享特征

  • 创造融合点:设计概念间的创新性连接点

  • 构建融合提示:创建引导AI 进行概念嫁接的提示语

应用示例

任务:尝试将“社交媒体”和“传统图书馆”这两个概念进行嫁接,以设计一个创新的知识共享平台。
(1)输入概念:
社交媒体:即时性、互动性、个性化、病毒传播
传统图书馆:知识储备、系统分类、安静学习、专业指导
(2)共同特征:
信息存储和检索
用户群体链接
知识分享
(3)融合点:
实时知识互动
知识深度社交网络
数字化图书馆员服务
个性化学习路径

知识转移技术(KTT):跨域智慧应用

        KTT 基于认知科学中的迁移学习理论和组织学习理论。提出了以下关键步骤:

源域识别:

  • 定义:确定与目标问题相关的源领域知识,这是知识迁移的起点。需要从大量的知识源中筛选出与当前任务或问题具有相似性或相关性的领域。

  • 做法:通过对目标问题的分析,明确其关键特征、属性和关系,然后在已有的知识体系中进行搜索和匹配,找到可能的源领域。例如,如果目标是解决某一复杂的管理问题,可能会将其他成功的企业管理案例或相关的管理理论作为源域。

  • 作用:为后续的知识迁移提供基础,只有准确识别源域,才能有效地从源域中提取有用的知识并应用到目标域。

知识重构:

  • 定义:对从源域中获取的知识进行重新组织和调整,以使其更适合目标域的需求。源域知识可能具有不同的结构、表示方式或侧重点,需要进行重构才能更好地与目标域相结合。

  • 做法:根据目标域的特点和要求,对源域知识进行分解、整合、转换等操作。例如,将源域中复杂的理论知识简化为更易于理解和应用的规则或流程,或者将不同来源的知识进行融合,形成一个更连贯、一致的知识体系。

  • 作用:提高源域知识在目标域中的可操作性和适用性,避免直接应用源域知识时可能出现的不匹配问题。

知识抽象:

  • 定义:从重构后的知识中提取出具有一般性和普遍性的特征、模式或原理,去除具体的细节和无关信息,形成更抽象、更具概括性的知识表示。

  • 做法:运用归纳、演绎、类比等方法,对重构后的知识进行分析和提炼。例如,从多个具体的成功案例中总结出共同的关键因素和规律,或者将具体的操作流程抽象为更通用的模型。

  • 作用:使知识更易于迁移和应用到不同的情境中,增强知识的适应性和扩展性,同时也有助于提高知识的传递和共享效率。

应用与验证:

  • 定义:将抽象后的知识应用到目标域中,解决目标问题,并通过实际的应用效果对知识进行验证和评估。

  • 做法:将抽象知识与目标域的具体问题相结合,制定相应的解决方案并实施。在应用过程中,收集相关的数据和反馈信息,与预期的结果进行对比分析,以确定知识的有效性和准确性。例如,将从其他领域抽象出来的管理策略应用到实际的企业管理中,观察企业的绩效变化和员工的反馈,来验证该策略的有效性。

  • 作用:通过实际应用来检验知识迁移的效果,发现问题并及时进行调整和改进,确保知识能够真正解决目标域的问题,同时也为进一步的知识优化和完善提供依据。

目标域映射:

  • 定义:将经过抽象和验证的知识与目标域的具体概念、结构和情境进行映射和整合,使知识在目标域中得以落地和生根,成为目标域知识体系的一部分。

  • 做法:根据目标域的特点和需求,将抽象知识与目标域中的具体元素建立对应关系,将知识融入到目标域的现有框架中。例如,将从其他领域借鉴的创新方法与企业自身的产品研发流程相结合,使其成为企业创新体系的一部分。

  • 作用:实现知识从源域到目标域的有效迁移,使目标域能够吸收和利用源域的知识优势,提升目标域的知识水平和解决问题的能力,促进目标域的发展和创新。

KTT 实施步骤

  • 定义问题:明确目标领域需要解决的问题或创新点

  • 寻找源域:搜索可能包含相关知识或方法的其他领域

  • 知识提取:从源域提取关键的知识、技能或方法

  • 相似性分析:分析源域和目标域之间的结构相似性

  • 转移策略设计:制定知识从源域到目标域的转移策略

  • 构建转移提示:创建引导AI 进行知识转移的提示语

应用示例

假设如果想要改善在线教育平台的学生参与度,可以尝试从游戏设计领域转移知识。
(1)问题定义:提高在线教育平台的学生参与度和学习动力
(2)源域:游戏设计 关键知识:游戏化机制、玩家心理学、关卡设计、即时反馈系统
(3)知识提取与抽象:
进度可视化
成就系统
社交互动
个性化挑战
即时反馈
(4)相似性分析:
游戏玩家 <-> 学生
游戏关卡 <-> 课程单元
游戏技能提升 <-> 知识获取
游戏社交系统 <-> 学习社区

随机组合机制(RCM):打破常规思维

        RCM 建立在创造性思维中的“强制联系”和“创意综合”理论基础上,将这些理论应用到AI 内容生成领域,提出了以下步骤:

  • 元素库构建:创建包含多样化元素的知识库

  • 强制联系:将随机选择的元素强制性地联系起来

  • 随机抽取:从元素库中随机选择元素

  • 创意整合:基于随机组合生成新的创意概念

RCM 实施步骤

  • 定义创意领域:明确需要创新的具体领域或问题

  • 构建多元元素库:收集与创意领域相关和不相关的多样化元素

  • 设计随机抽取机制:创建一个可以随机选择元素的系统

  • 制定组合规则:设定如何将随机元素组合在一起的规则

  • 生成组合提示:创建引导AI 进行随机组合的提示语

应用示例

假设要为一家咖啡连锁店设计一个创新的营销活动,可以使用RCM来激发创
意。
元素库构建:
▪ 咖啡相关:豆种、烘焙、萃取、风味
▪ 文化艺术:音乐、绘画、舞蹈、文学
▪ 科技:AR、VR、AI、物联网
▪ 环保:可持续、回收、碳中和、生物降解
▪ 社交:社交媒体、直播、社区、互动

极端假设策略(EHS):突破思维界限

        EHS 借鉴了“逆向思维”和“假设性思考“的概念,开发了以下策略:

  • 常规假设识别:明确当前领域的常规假设

  • 后果探索:深入探讨极端假设带来的影响和机会

  • 极端反转:将常规假设推向极端或完全反转

  • 创新洞察提取:从极端假设中提取可能的创新点

EHS 实施步骤

  • 识别常规假设:列出在特定领域被广泛接受的假设

  • 生成极端假设:将这些假设推向极端或完全颠覆

  • 构建假设场景:详细描述如果极端假设成真会怎样

  • 探索影响:分析极端假设对各个相关方面的潜在影响

  • 提取创新点:从极端场景中提炼出可能的创新机会

  • 构建极端假设提示:创建引导AI 进行极端假设思考的提示语

应用示例

任务:以“未来教育”为主题,运用极端假设策略来激发创新思维。
常规假设:
(1)学校是学习的主要场所
(2)教师是知识的主要传播者
(3)学习需要长时间的努力
(4)考试是评估学习效果的主要方式

多重约束策略(MCS):激发创造性问题解决

        MCS 基于创造性问题解决理论和设计思维中的有限性思维概念,提出了以下关键步骤:

  • 约束条件设定:制定多个具有挑战性的限制条件

  • 创造性妥协探索:寻找满足所有约束的创新解决方案

  • 约束间矛盾分析:识别约束之间的潜在冲突

  • 约束突破思考:探索创造性地绕过或重新定义约束

MCS 实施步骤

  • 问题定义:明确需要解决的核心问题

  • 约束条件列举:设置多个具有挑战性的限制条件

  • 约束影响分析:评估每个约束对问题解决的影响

  • 创新方案构思:在多重约束下寻找创新解决方案

  • 约束重构:必要时重新定义或调整约束条件

应用示例

任务:用多重约束策略来设计一款创新的智能家居产品。
(1)核心问题:设计一款多功能智能家居设备
(2)约束条件:
▪ 产品体积不能超过一个标准鞋盒
▪ 必须同时满足5个不同的家居需求
▪ 产品售价不超过100美元
▪ 使用100%可回收材料制造
▪ 适用于从儿童到老年人的所有年龄段

语体模拟机制(RSM):精准捕捉语言特征

        RSM 建立在语言学中的语域理论和语体分析的基础上,关键步骤如下:

语体特征识别:

  • 词汇层面:梳理特定文本中使用的专业术语、高频词汇以及具有独特风格的词汇。如科技论文中,会大量使用专业术语来准确描述研究内容,像 “量子纠缠”“基因编辑” 等。而在日常对话或文学作品中,口语化、形象化的词汇更为常见,如 “唠嗑”“溜达” 这类富有生活气息的词。​

  • 语法层面:分析文本句子结构的复杂性,包括句子的长度、句式类型。学术论文常使用结构严谨、逻辑复杂的长句,包含多层修饰成分和从句,以清晰阐述观点和论证过程。相比之下,广告语体多采用简短、有力的短句,如 “怕上火,喝王老吉”,增强传播效果。​

  • 语篇层面:研究文本的组织方式、篇章结构以及衔接手段。如新闻报道通常采用倒金字塔结构,将最重要的信息放在开头;而小说则会运用悬念、伏笔等手法来构建情节,吸引读者阅读。

语体要素提取:

  • 正式程度:判断文本语言的正式性或随意性。正式语体常见于商务谈判、法律文件等场景,用词规范、语法严谨,避免使用缩写和口语化表达。而在朋友间的聊天、社交媒体动态中,语言则更倾向于随意、轻松,频繁使用缩写、表情符号和网络流行语。​

  • 情感色彩:识别文本中蕴含的情感倾向,是积极、消极还是中性。诗歌、散文等文学作品往往会通过丰富的词汇和修辞手法表达强烈的情感,而科技文献则多保持中性客观的表达,以确保研究结果的可信度。​

  • 目的功能:明确文本的写作目的,是传递信息、劝说读者采取行动,还是娱乐读者。说明书旨在向读者介绍产品的使用方法和注意事项,广告则是为了激发消费者的购买欲望。

语境因素考量:

  • 场景语境:考虑文本产生的实际场景,是正式的商务会议、轻松的家庭聚会,还是严肃的学术研讨会。不同场景会对语言的使用产生显著影响,在商务会议上,语言应简洁明了、专业得体;而在家庭聚会中,语言更加随意自然。​

  • 参与者关系:分析文本交流双方的身份、地位和关系,是上下级、师生、朋友还是陌生人。例如,与上级沟通时,语言要恭敬、礼貌;与朋友交流时,则可以更加随意、幽默。​

  • 文化背景:关注文本所处的文化环境,不同文化对语言的使用有着不同的规范和习惯。如在一些西方国家,人们在交流中更直接、坦率,而在东方文化中,表达往往较为委婉含蓄。

语体规则构建:

  • 词汇选择规则:依据前面识别和提取的信息,制定在特定语体中选择词汇的规则。例如,在科技语体中,优先使用准确的专业术语,避免使用模糊、含混的词汇;在文学创作中,则可以根据表达需要,灵活运用丰富的修辞手法和形象化的词汇。​

  • 语法运用规则:确定特定语体中合适的语法结构和句式。正式语体中,应遵循严格的语法规范,避免语法错误;而在一些口语化的语体中,适当使用省略句、倒装句等,可以增强语言的自然感和生动性。​

  • 语篇组织规则:建立符合特定语体的篇章结构和衔接方式。如在议论文中,通常采用提出问题、分析问题、解决问题的结构,通过使用连接词和过渡句来保证文章的逻辑性和连贯性。

RSM 实施步骤

  • 确定目标语体:明确需要模拟的具体语言风格

  • 收集语料样本:搜索目标语体的典型文本样本

  • 分析语言特征:从词汇、句法、修辞等多个维度分析语体特征

  • 提取关键元素:识别和提取构成语体的独特语言元素

  • 构建语体指南:创建详细的语体使用指南

  • 生成模拟提示:创建引导AI 模拟特定语体的提示语       

应用示例

假设需要AI生成一篇模仿莎士比亚风格的短文,可以使用RSM来指导AI更准确地捕捉莎士比亚的语言特征。
莎士比亚风格特征分析:
词汇:使用古英语词汇,创造性的复合词
▪ 语法:倒装句,不规则句式
▪ 修辞:大量的比喻、隐喻和双关语
▪ 韵律:多用抑扬格五音步
▪ 主题:常涉及爱情、权力、背叛等永恒主题

情感融入策略(EIS):增强文本感染力

        EIS 基于情感语言学和心理语言学的研究成果,开发了以下策略:

情感词汇选择:

  • 依据目标情感定位词汇:明确希望引发的情感反应,如快乐、悲伤、愤怒、安心等。若要营造温馨氛围,可选用 “温暖”“甜蜜”“安心” 等词汇;若旨在激发紧迫感,“危机”“紧急”“迫切” 这类词汇更为合适。例如,在设计母婴产品文案时,使用 “呵护”“陪伴”“安心之选”,能有效传递品牌的关怀。​

  • 匹配受众情感偏好:考虑受众群体特征,包括年龄、性别、文化背景等对情感词汇的偏好。年轻人可能对时尚、潮流的情感词汇更感兴趣,如 “酷炫”“燃爆”;而老年人则更倾向于平实、质朴的表达,如 “实在”“可靠”。针对不同地域文化,也要选择适配的情感词汇,避免文化冲突。​

  • 运用情感强度递进词汇:根据表达需要,合理安排情感词汇的强度。从温和到强烈,逐步引导受众情感。如在公益广告中,先用 “关注”“关心”,再过渡到 “痛心”“疾呼”,增强情感冲击力。

意向构建:

  • 运用具象化描述:通过具体的场景、事物和行为描述,构建清晰的意向,让受众产生身临其境之感。例如 “阳光洒在金黄的麦穗上,微风拂过,麦浪轻轻翻滚”,比单纯说 “乡村景色很美” 更能引发对乡村的美好想象。​

  • 结合隐喻与象征:借助隐喻和象征手法,赋予事物特定情感内涵。如 “生命是一场旅程”,将生命比作旅程,传达出人生充满探索与经历的情感意向。红色常象征热情、活力,在广告中运用红色元素,可营造热烈氛围。​

  • 创造互动性意向:设计能够引导受众参与的意向,激发其主动思考与想象。如 “当你按下这个按钮,全新的生活即将开启,你会看到......”,让受众在脑海中构建属于自己的美好画面。

语气调节:

  • 根据情境选择语气:在不同沟通情境中,灵活调整语气。正式场合使用正式、礼貌的语气,如商务谈判中 “很荣幸与您合作,希望我们能达成共识”;而在朋友间交流,可采用轻松、随意的语气,如 “嘿,周末一起出去玩呗!”​

  • 利用语气词和标点符号:合理运用语气词和标点符号,增强语气表达效果。“啊”“呀”“吧” 等语气词可使表达更具情感色彩,感叹号能加强情感强度,问号可引发思考与互动。如 “哇!这也太漂亮了吧!”​

  • 控制语气的一致性:在一段表达中,保持语气的一致性,避免语气突变导致受众困惑。若文案整体风格轻松幽默,就不宜突然插入严肃、生硬的语句。

情感节奏控制:

  • 设置情感起伏:如同音乐节奏,在表达中安排情感的高低起伏。先营造舒缓氛围,再突然引入紧张情节,形成反差,吸引受众注意力。如在故事叙述中,先描述平静的日常生活,再突然出现意外事件,引发情感波动。​

  • 调整语速与停顿:在口头表达或文案排版中,通过调整语速和停顿来控制情感节奏。重要内容前适当停顿,引起受众注意;情感激烈时加快语速,增强感染力。如演讲时,讲到关键论点前稍作停顿,再加快语速强调。​

  • 把握情感持续时间:根据表达目的,合理控制情感持续的时间。过短的情感刺激难以给受众留下深刻印象,过长则可能导致受众疲劳。如广告中,将核心情感诉求控制在合适时长,保持受众的关注度。

EIS 实施步骤

  • 确定目标情感:明确文本要传达的主要情感基调

  • 创建情感词库:收集与目标情感相关的词汇和短语

  • 设计情感曲线:规划文本中情感强度的变化趋势

  • 选择情感触发点:在文本中植入情感元素的关键位置

  • 构建情感场景:创造能引发情感共鸣的具体场景或细节

  • 生成情感融入提示:创建引导AI 注入情感元素的提示语

应用示例

假设需要AI生成一篇关于“离别”主题的短文,可以使用EIS来指导AI更好地融入情感元素。
情感分析:
▪ 主要情感:悲伤、不舍
▪ 次要情感:希望、感激

修辞技巧应用(RTA):提升语言表现力

        RTA 基于修辞学和文体学的理论,将这些理论应用到AI 内容生成过程中,提出了以下关键步骤:

修辞手法识别:

  • 构建多维度识别体系:训练 AI 构建一个涵盖多种修辞手法的分类模型,不仅包括比喻、拟人、夸张等常见手法,还囊括对偶、排比、设问、反问等。通过自然语言处理技术,AI 对输入文本或参考语料进行分析,准确标记出其中使用的各类修辞手法。例如,当检测到 “月光如流水一般,静静地泻在这一片叶子和花上”,AI 能够识别出这是比喻手法,并确定本体为 “月光”,喻体为 “流水”。​

  • 分析修辞手法组合运用:除了识别单一的修辞手法,AI 还需分析多种修辞手法在文本中的组合方式。比如,在 “盼望着,盼望着,东风来了,春天的脚步近了” 这句中,“盼望着,盼望着” 运用了反复手法,“春天的脚步近了” 则使用了拟人手法。AI 识别出这种组合运用,从而更好地理解作者的表达意图和情感色彩。​

  • 提取修辞特征数据:在识别修辞手法的过程中,AI 提取与修辞手法相关的特征数据,如比喻的相似点、拟人赋予事物的人类特质、夸张的程度等。这些数据为后续的技巧整合提供了丰富的素材。

技巧整合:

  • 依据生成目标进行整合:根据 AI 内容生成的具体目标,如创作诗歌、撰写广告文案、生成故事脚本等,有针对性地整合识别出的修辞手法。若目标是创作浪漫风格的诗歌,AI 可以将比喻、拟人等富有想象力的手法结合起来,营造出浪漫的氛围,如 “星星在夜的怀抱中呢喃,月光为大地披上银纱”。​

  • 优化技巧融合逻辑:确保不同修辞手法在整合过程中逻辑连贯、自然流畅。AI 在整合时,要考虑手法之间的呼应和衔接,避免生硬堆砌。比如,在描述一个场景时,先用排比句 “山朗润起来了,水涨起来了,太阳的脸红起来了” 描绘整体景象,再用比喻句 “春天像小姑娘,花枝招展的,笑着,走着” 进一步点明主题,使文本层次分明、过渡自然。​

  • 探索新的组合方式:鼓励 AI 尝试创新,探索修辞手法的新组合方式,为内容生成带来新鲜感和独特性。通过大数据分析和机器学习,AI 可以发现一些在传统创作中较少使用但效果显著的组合,丰富创作手法。

语境适配:

  • 分析生成任务的语境要素:AI 深入分析内容生成任务所处的语境,包括受众群体、使用场景、文化背景等。例如,为儿童创作故事时,要使用简单易懂、生动形象的语言和修辞手法,避免过于复杂的表达;而在撰写学术论文时,则应使用严谨、规范的修辞,增强论证的说服力。​

  • 调整修辞手法以适应语境:根据语境分析结果,AI 对整合后的修辞手法进行调整。在跨文化传播中,要避免使用具有特定文化内涵、可能引起误解的修辞手法,选择通用性强的表达方式。如在中国文化中,“松竹梅” 常象征高尚品质,但在其他文化中可能没有类似的象征意义,需要替换为更易被理解的表述。​

  • 融入语境特定元素:AI 将语境中的特定元素融入修辞手法中,使内容更贴合实际情境。在为旅游景区创作宣传文案时,可以结合景区的特色景观、历史文化等元素,运用修辞手法进行生动描绘,如 “古老的城墙诉说着岁月的故事,澄澈的湖水倒映着苍山的巍峨,[景区名称] 宛如一幅绝美的山水画卷”。

效果评估:

  • 建立多指标评估体系:AI 从多个维度对生成内容的修辞效果进行评估,包括语言的生动性、感染力、逻辑性,以及是否准确传达了预期的情感和信息等。通过自然语言处理技术,计算文本的词汇丰富度、句子复杂度、情感倾向等量化指标,同时结合人工评价,对生成内容进行全面评估。​

  • 对比参考文本进行评估:将生成内容与同类型的优秀参考文本进行对比,分析在修辞手法运用、语境适配等方面的差距。AI 可以从参考文本中学习成功经验,为后续的内容生成提供改进方向。例如,在评估广告文案时,将其与市场上知名的广告案例进行对比,分析其在吸引消费者注意力、激发购买欲望等方面的表现。​

  • 根据评估结果优化策略:根据效果评估结果,AI 及时调整修辞手法识别、技巧整合和语境适配的策略。如果发现生成内容在某个方面存在不足,如修辞手法运用过于单一,AI 可以优化识别模型,增加对不同手法的敏感度,或者改进技巧整合方式,丰富创作手法。

RTA 实施步骤

  1. 确定任务目标:明确文本的主要目的
  2. 选择核心修辞:选择2-3种主要的修辞手法
  3. 设计修辞示例:为选定的修辞手法创建使用示例
  4. 安排修辞分布:规划修辞技巧在文本中的分布
  5. 创建平衡策略:确保修辞技巧不过与刻意或过度
  6. 生成修辞应用提示:创建AI 运用修辞技巧的提示语

语言风格优化:整合情感修辞技巧

        为了将语体模拟、情感融入和修辞技巧有机结合,可以采用以下策略:

应用示例

假设需要AI生成一篇描述城市夜景的短文,可以使用RTA来指导AI更好地运用修辞技巧。
修辞技巧选择:
▪ 主要技巧:比喻、拟人、排比
▪ 辅助技巧:对比、夸张

提示词相关文章推荐

大模型-提示词基础_大模型提示词-CSDN博客

大模型-提示词调优_大模型 提示词优化-CSDN博客

大模型-提示词链_通过大语言模型分析实体之间的上下文关系,提取具有逻辑关联性的子链;融合各子链-CSDN博客

大模型-提示词设计实战(上)_vanna 提示词设计-CSDN博客

大模型-提示词设计实战(下)-CSDN博客

大模型-提示词设计策略与机制_大模型从合同中提取内容提示词-CSDN博客

大模型-提示词工程与架构_提示工程-CSDN博客

大模型-提示词安全工程-CSDN博客

参考文献

【DeepSeek】【清华大学】第一弹:DeepSeek从入门到精通.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

找了一圈尾巴

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值