1.限制版跳台阶
【题目描述】
一个人跳楼梯,可以跳一格,可以跳两格,但不能连续跳两格,问跳到n层有多少种方式。
【解法】
两个数组,dp1存放最后一步是1步,dp2存放最后一步是2步。
dp1[i] = dp[i - 1] + dp2[i - 1]
dp2[i] = dp1[i - 2]
print(dp1[n-1] + dp2[n-1])
2.单调栈
【题目描述】
对于一个有N个元素的数组,包含a1,a2,a3……an,定义如下两个函数:
L(i)=j需要满足如下条件:
j < i
a[i] > a[i]
如果找不到,则L(i)为0;若有多个j,则取离i最近的一个。
R(i)=j需要满足如下条件:
j > i
a[i] > a[i]
如果找不到,则R(i)为0;若有多个j,则取离i最近的一个。
定义Max(i)=L(i)*R(i),输出最大的Max(i),其中1<=i<=N。
#include <bits/stdc++.h>
#include <stack>
#include <vector>
using namespace std;
int main() {
int n;
cin >> n;
int64_t ans = 0;
vector<int> a(n), l(n);
stack<int> stk;
for (int i = 0; i < n; i++) {
cin >> a[i];
while (!stk.empty() && a[stk.top()] <= a[i]) {
stk.pop();
}
if (!stk.empty()) {
l[i] = stk.top() + 1;
}
stk.push(i);
}
while (!stk.empty()) {
stk.pop();
}
//另一个单调栈求R[i]
for (int i = n - 1; i >= 0; i--) {
while (!stk.empty() && a[stk.top()] <= a[i]) {
stk.pop();
}
if (!stk.empty()) {
ans = max(ans, (int64_t)(1ll * l[i] * (stk.top() + 1)));
}
stk.push(i);
}
cout << ans << endl;
}
其中有一行代码:ans = max(ans, (int64_t)(1ll * l[i] * (stk.top() + 1)))。其中用了1LL,LL其实代表的是long long,1LL是为了在计算时把int类型的数据转化成long long数据类型。
3.最大子序列和
【题目描述】
给定一个长为n*m的序列,这个序列是由一个长为n的序列重复m次得来的。问这个序列的最大连续子段和是多少。(1<=n,m<=10^5)
【解法】
(1)m=1:普通的最大子序列问题
我们用dp[n]表示以第n个数结尾的最大连续子序列的和,于是存在以下递推公式:
dp[n] = max(0, dp[n-1]) + num[n]
(2)m>1
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n, m; cin >> n >> m;
vector<int> a(n * 2);
int64_t ans = LLONG_MIN, dp = 0, sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (dp <= 0) {
dp = a[i];
} else {
dp += a[i];
}
ans = max(ans, dp);
sum += a[i];
}
if (m == 1) {
cout << ans << '\n';
return 0;
}
int64_t link = LLONG_MIN;
for (int i = n; i < 2 * n; i++) {
a[i] = a[i - n];
if (dp <= 0) {
dp = a[i];
} else {
dp += a[i];
}
link = max(link, dp);
}
if (sum > 0) {
link += 1ll * sum * (m - 2);
}
cout << max(link, ans) << '\n';
}
还有第四题,懒得写了
参考链接:https://www.nowcoder.com/discuss/500713