Matlab 实用代码集

        本博客将存放一些常用的Matlab代码片段,整理成博客,并持续更新,以便写代码可以调用。

1、函数多输入多输出

        Matlab写函数的时候,输入输出个数经常是不固定的,

narginchk(1,3);                         %输入参数个数必须是1-3个,否则宝座
nargoutchk(0,1);                        %输出参数个数必须是0-2个,否则报错
% 不同输入个数参数情况
if nargin == 1
    Var2=2;                             % 无第二个参数输入,则第二个入参赋值
end

        实例:可以参考我的博客《利用matlab实现SAR 图像线性拉伸显示》https://blog.csdn.net/weixin_41649786/article/details/118404909?spm=1001.2014.3001.5501

2、图片去掉黑边(空值)

        遥感图像中,经常会有NAN值,显示的时候会有黑边,影响美观

clear;close all;clc;
Image  = imread('D:\Code\Matlab\遥感图像变化检测\Area\202201121.tif');
Image(Image<0) = nan;
him = imshow(Image);
set(him, 'AlphaData', ~isnan(Image))

3、数据进行对数-归一化

        有的数据需要显示出更好的效果,需要对数据进行先对数,然后归一化。例如SAR图像散射值大的能达到2^16=65536,直接看图片是一片黑,因此需要调亮暗部细节。

InImage(InImage < 0) = NaN;
Image = 10*log10(InImage);
%% 第一种
Value_max = max(Image(:));
Value_min = min(Image(:));
% 像素归一化
OutImage = uint8((255/(Value_max-Value_min))*Image);        %图像(像素)归一化

也可以用拉伸显示的方式进行显示, 可以参考我的博客《利用matlab实现SAR 图像线性拉伸显示》https://blog.csdn.net/weixin_41649786/article/details/118404909?spm=1001.2014.3001.5501

4、经纬度坐标数据类型转换

        经纬度坐标有两种形式保存:一种是度度度(小数形式,例如117.649)形式的数据,一种是度分秒(117-38-57.98东、117-38-57.98E)形式的数据,因此经常需要将两种数据进行转换。

第一种:度度度转化为度分秒,核心:度数=取整,分数=取整((值-度数)*60),秒数=((值-度数)*60-分数)*60

Str = abs(Str);                         % 排除负号的影响
degree = fix(Str);                      % 度
minute = fix((Str-degree)*60);          % 分
second = ((Str-degree)*60-minute)*60;   % 秒

 第二种:度分秒转化为度度度,核心:度分秒=度+分/60+秒/3600=度

second = str2double(Str(temp1(2)+1:Leng));                  %秒"
minute = str2double(Str(temp1(1)+1:temp1(2)-1));            %分'
degree = str2double(Str(1:temp1(1)-1));                     %度°
coor = PN*(((second/60)+minute)/60+degree);                 %经纬度(十进制)

5、计算N天前(后)的日期

 day1 = datetime(datestr(now,'yyyy-mm-dd'))+caldays(1)     % 明天
 day0 = datetime(datestr(now,'yyyy-mm-dd'))                % 今天
 day_1 = datetime(datestr(now,'yyyy-mm-dd'))-caldays(1)    % 昨天

6、人机交互选取数据

        弹出文件选择框,选择想要的数据

% 选择需要处理的tif文件
[FileName,PathName,index] = uigetfile({'*.shp'},'tif文件读取','MultiSelect','on');
% 判断是或选择

7、颜色替换

        替换图片中的某一种(类)的颜色,可以参考我的博客《利用Matlab替换图片部分颜色》https://blog.csdn.net/weixin_41649786/article/details/125291724?spm=1001.2014.3001.5501

image = imread('测试.JPG');                      % 读取图像
figure('Name','原图')
imshow(image);                                  % 显示
R = image(:,:,1);                               % 红色
G = image(:,:,2);                               % 绿色
B = image(:,:,3);                               % 蓝色

index = find(R<20 & G<20 & B<20);               % 索引,找出被替换颜色的范围
R(index) = 255;                                 % 红色通道赋值
G(index) = 255;                                 % 绿色通道赋值
B(index) = 255;                                 % 蓝色通道赋值
Out_Image(:,:,1) = R;                           % 输出图像红色通道
Out_Image(:,:,2) = G;                           % 输出图像绿色通道
Out_Image(:,:,3) = B;                           % 输出图像蓝色通道

9. 图片添加地理信息

        给图片添加地理信息需要用到:GeographicCellsReference、GeographicPostingsReference、MapCellsReference、MapPostingsReference等其中的某一个类(对象),通过创建这些类(对象),来生成包含地理信息的R,代码如下:

% Read a JPEG image from a file. 
Image = imread('_J6A5783.JPG');
% 定义图片经纬度范围
lonlim = [-20 20];      % 经度范围[max min]
latlim = [-10 10];      % 纬度范围[max min]
rasterSize = size(Image);       % 栅格(图片、数据)大小(行、列)
R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north');
% R.RowsStartFrom = 'east'

% 生成Geotiff文件
filename = 'Geo-Hlz' + ".tif";
geotiffwrite(filename, Image, R)
% 创建地图并显示数据
figure('Name','效果图')
usamap(Image,R)
geoshow(filename)

10. 数据可视化(3D、4D)

例如:经度、纬度、高度以及数量,利用不同颜色表示不同数据;

close all;clear;clc;

long  =[120 121 122 119 118 115 130 129 128 127];       %经度
lat   =[ 60  61  60  59  57  56  55  61  68  64];       %维度
Hight =[ 12  15  16  17  11  15  15  19   9  21];       %高度
Num   =[  1   2   5   3   4   6   1   0   8   4];       %数量

figure('Name','3D数据可视化')
scatter(long,lat,40,Num,'filled');
ax=gca;
ax.XDir='reverse';
%view(-31,14)
xlabel('经度')
ylabel('维度')
zlabel('高程/m')
cb=colorbar;
cb.Label.String='人数/人';

figure('Name','4D数据可视化')
scatter3(long,lat,Hight,40,Num,'filled')
ax=gca;
ax.XDir='reverse';
view(-31,14)
xlabel('经度')
ylabel('维度')
zlabel('高程/m')
cb=colorbar;
cb.Label.String='人数/人';

第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类与回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模与仿真 第42章 并行运算与神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨 第44章 层次分析法 第45章 灰色关联度 第46章 熵权法 第47章 主成分分析 第48章 主成分回归 第49章 偏最小二乘 第50章 逐步回归分析 第51章 模拟退火 第52章 RBF,GRNN,PNN-神经网络 第53章 竞争神经网络与SOM神经网络 第54章 蚁群算法tsp求解 第55章 灰色预测GM1-1 第56章 模糊综合评价 第57章 曲线拟合 目前没空,后面继续整理,还有很多类似的代码,欢迎下载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心网千结

若有所帮助,请点赞支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值