【R语言】初学者的线性回归预测法

这篇博客适合R语言初学者,介绍了线性回归预测的基础方法,包括样本导入、OLS多元回归、回归诊断和跨期测试。通过包openxlsx导入数据,使用lm()函数进行回归,并通过cor()和scatterplotMatrix()进行相关性检验和散点图矩阵分析。回归诊断部分讲解了如何通过plot()函数检查线性关系、正态性、同方差性和离群点。最后,通过残差平方和和R方评估跨期测试的模型拟合效果。
摘要由CSDN通过智能技术生成

预测回归方法都比较基础,适合初学者。

绿色部分为R语言实现的代码。


一、 样本导入

包:openxlsx  ##用来导入excel的包

选择好相关需测试的样本(以excel为例),导入。

library(openxlsx)
b<-read.xlsx("")  
##引号内为文件路径

二、OLS多元回归

包:car 

直接从多元开始,一元就变得很简单啦。

1. 检验变量间的相关性()


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值