推荐系统
文章平均质量分 91
小小硕、
这个作者很懒,什么都没留下…
展开
-
深度学习推荐系统——Embedding
深度学习推荐系统——EmbeddingEmbedding概述Word2vecItem2vecEmbedding概述Embedding操作的主要作用是将稀疏向量转换成稠密向量,向量之间的距离反映了对象之间的相似性。从另一空间表达物品,同时揭示物品之间潜在关系的。1、负责将发哦为稀疏特征向量转换成稠密低维特征向量2、Embedding本身就是极其重要的特征向量。3、Embedding对物品、用户相似度的计算是常用的推荐系统召回层技术。Word2vecCBOW模型的输人是wtw_twt周边的词,预原创 2021-09-08 11:49:06 · 397 阅读 · 0 评论 -
深度学习推荐系统——深度学习时代
深度学习推荐系统——深度学习时代AutoRecDeep CrossingNeuralCFPNNWide&DeepFM与深度学习模型结合FNNDeepFMNFM注意力机制AFMAutoRech(r;θ)=f(W⋅g(Vr+μ)+b)h ( \boldsymbol { r } ; \theta ) = f ( \boldsymbol { W } \cdot g ( \boldsymbol { V } \boldsymbol { r } + \mu ) + b )h(r;θ)=f(W⋅g(Vr+μ)+原创 2021-09-07 22:54:56 · 1215 阅读 · 5 评论 -
深度学习推荐系统——前深度学习时代
深度学习推荐系统——前深度学习时代协同过滤相似度UserCFItemCF矩阵分解矩阵分解的求解过程消除用户和物品打分的偏差矩阵分解的优缺点逻辑回归特征工程POLY2模型FM模型FFM模型GDBT+LRLS-PLM(Large Scale Piece-wise Linear Mode)总结协同过滤相似度余弦相似度sim(i,j)=cos(i,j)=i⋅j∥i∥⋅∥j∥\operatorname { sim } ( \boldsymbol { i } , \boldsymbol { j } ) =原创 2021-09-06 10:13:16 · 667 阅读 · 0 评论