深度学习
键盘强者
这个作者很懒,什么都没留下…
展开
-
Neural-Transfer及Pytorch实现
什么是Neural-Transfer,并无一个严格的定义,简单来说就是,就是将一张图片的“风格”迁移到另外一张图片的“内容”上,进而重新生成一张新的图片。这样讲比较模糊,但是看一张图就一目了然了。左上角是建筑物图片,通常称为Conten(内容图片),简记为C。右上角是梵高的星空,通常称为Style(风格图片),简记为S。下图是融合了Content的内容和Style的风格生成的图片,称为Generated。吴恩达有关于Neural-Transfer的讲解,在B站和网易云都能搜到他的课程,这里就不放出链接原创 2020-06-15 15:10:03 · 482 阅读 · 0 评论 -
Focal Loss原理解读以及Pytorch实现
论文:Focal Loss for Dense Object Detection论文链接:https://arxiv.org/abs/1708.02002Focal Loss这篇文章是He Kaiming和RBG发表在ICCV2017上的文章,详细的论文地址在上面,这里记录下我学习过程,下面我参考的几篇博客Focal LossFocal Loss论文阅读 - Focal Loss for Dense Object Detection如何评价Kaiming的Focal Loss for Dense原创 2020-06-11 14:43:43 · 2130 阅读 · 0 评论