深度学习医学领域
文章平均质量分 91
深度学习医学领域
键盘强者
这个作者很懒,什么都没留下…
展开
-
nnUNet在2D图像上的训练和测试的使用教程
写在前面的话本文是对nnUNet如何在2D数据上进行训练以及预测,是对几篇博文参考之后的总结,由于本人对nnUNet使用也是刚开始不久,所以对于nnUNet的理解肯定还停留在表层,所以原理上的东西就不多介绍了,更侧重于介绍其在2D数据上的使用流程。官方也有nnUNet训练2D数据的例子,一切以官方为准,本文仅作参考。本人的系统环境为:Ubuntu18.04,pytorch为:1.7.1+cu110。其余环境没有测试过。参考文章:保姆级教程:nnUnet在2维图像的训练和测试四:2020.07.2原创 2021-11-15 22:58:53 · 10734 阅读 · 11 评论 -
Dual-stream multiple instance learning networks for tumor detection in Whole Slide Image——论文笔记
关于多示例学习的资料网上比较少,但是在医学图像方面还是有人在应用的。主要是因为一般比较大,几个G都是十分常见的,这么大图片是无法直接训练,一般都会进行切图,所以天然契合多示例学习bag和instance的概念。最近看了一篇论文刚好关于这方面的,所以做下笔记。github地址:https://github.com/binli123/dsmil-wsipaper:https://arxiv.org/abs/2011.08939背景知识在多示例学习(MIL)中,一组训练样本被视为包含多个instance的原创 2021-02-26 00:11:17 · 3248 阅读 · 1 评论 -
WSI中基于面积方式获取组织掩码图
这篇博客主要记录一下我在获取组织掩码的常用方法或者是看到相关资料中介绍的方法。原创 2020-06-04 10:17:54 · 672 阅读 · 0 评论 -
weldon pool的keras版本
在看多示例学习资料的时候,发现有的模型使用一种叫weldon pooling laye的池化层。简单来说,就是max pooling的基础上再加上min pooling,即MaxMIn pooling,其实就是从特征图中选出最大的K个特征值和最小的K个特征值,K是一个超参数。源码下面是...原创 2020-05-11 23:23:41 · 182 阅读 · 0 评论 -
OpenSilde安装与入门
安装openslide是处理医学图像经常用到的一个包,因为WSI(whole slide image)是非常大的,在一般情况下是没有办法处理的,所以才要借助openslide进行处理。下面是openslide在ubuntu下的安装方法pip3 install openslide-python如果导入时发生报错,那一般是缺少依赖项,在终端运行:sudo apt install python...原创 2020-04-30 22:54:02 · 2581 阅读 · 2 评论 -
颜色标准化工具——StainTools
染色标准化工具——StainTools为什么要使用标准化工具函数介绍为什么要使用标准化工具在处理医学图像时经常会遇到切片染色不均衡问题,这也很容易理解,每个医生染色的剂量不同,容易造成颜色深浅不一。所以为了避免颜色不均衡给模型带来误差,通常会使用了一些颜色标准化工具来平衡不同病理图片颜色不一的问题。这里记录一下我使用StainTools这个工具包,以做备份。官方文档说明:https://st...原创 2020-04-30 21:24:59 · 3355 阅读 · 8 评论