TensorRT学习笔记(一)——使用Python API调用TensorRT 前言作为在英伟达自家GPU上的推理库,TensoRT仍然是使用英伟达显卡部署方案的最佳选择。TensorRT虽然支持Pytho和C++调用,但是在TensorRT8之前,python api只能在linux上使用,直到TensorRT8才支持python api在window下使用。具体安装在官方文档都有说明,附上官方文档:TensorRT官方文档安装.........
关于在ubuntu20.04下openpose环境安装 系统:ubuntu 20.04显卡:英伟达3070cuda11.1+cudnn8.0.4python:3.6.13首先将openpose整个仓库克隆在本地,仓库地址:openpose官方文档说了“Anaconda 不应安装在您的系统上或应停用Anaconda 包含一个与 Caffe 不兼容的 Protobuf 版本。要么卸载 anaconda 并通过 apt-get 安装 protobuf,要么使用命令停用 conda deactivate”,但是经过实际测试,可以在conda虚拟环境下进行编译,
ubuntu下conda虚拟环境迁移 将conda_dir/envs/实际环境名 打包压缩将conda_dir/pkgs这个目录打包压缩上传到服务器,解压后放在对应的conda_dir目录下vim /home/实际名/condadir/envs/实际环境名/bin/pip修改第一行的路径
重学语义分割之loss总结篇 目前遇到的loss大致可以分为四大类:基于分布的损失函数(Distribution-based),基于区域的损失函数(Region-based,),基于边界的损失函数(Boundary-based)和基于复合的损失函数(Compounded)。参考文章:语义分割中的 loss function 最全面汇总一文看尽15种语义分割损失函数(含代码解析)【损失函数合集】超详细的语义分割中的Loss大盘点医学影像分割—Dice LossPytorch tversky损失函数回归损失函数:Log-Co
nnUNet在2D图像上的训练和测试的使用教程 写在前面的话本文是对nnUNet如何在2D数据上进行训练以及预测,是对几篇博文参考之后的总结,由于本人对nnUNet使用也是刚开始不久,所以对于nnUNet的理解肯定还停留在表层,所以原理上的东西就不多介绍了,更侧重于介绍其在2D数据上的使用流程。官方也有nnUNet训练2D数据的例子,一切以官方为准,本文仅作参考。本人的系统环境为:Ubuntu18.04,pytorch为:1.7.1+cu110。其余环境没有测试过。参考文章:保姆级教程:nnUnet在2维图像的训练和测试四:2020.07.2
vs2019中出现PyTorch is not linked with support for cuda devices的解决方法 系统:win10vs版本:vs2019libtorch:1.10.0cuda:10.2.在win10和vs2019配置好libtorch后,发现只能调用CPU,一旦指定GPU,就会报以下错误:PyTorch is not linked with support for cuda devicesException raised from getDeviceGuardImpl at C:\w\b\windows\pytorch\c10/core/impl/DeviceGuardImplInterfa
ncnn学习笔记(一)——配置ncnn 由于本人使用的系统是win10,所以记录也是在win10下使用ncnn。前期准备网上很多介绍ncnn的配置教程都是从头开始构建编译,其实官方已经编译好一些版本的ncnn,直接下载就行了,没有必要从头开始编译。官方github: https://github.com/Tencent/ncnn从官方仓库的页面,点击releases我用的是vs2019,shared是动态链接版本,我下的就是shared版本解压后随便存放在哪个盘都行,然后记得在环境变量的path把bin路径添加进去,像我就放在D盘
CLAM——论文笔记 最近看了一篇有关多示例学习的paper,题目为Data Efficient and Weakly Supervised Computational Pathologyon Whole Slide Images,对里面提出的模型比较感兴趣,特此做一下笔记。github地址:https://github.com/mahmoodlab/CLAMpaper地址:https://arxiv.org/abs/2004.09666笔记这篇paper提出了一个Clustering-constrained Atten
mmdetection v2.0版本的一些模型使用技巧 最近在学习如何使用mmdetection,收集了一下目前所看到的一些trick和技巧。参考文章:mmdetection 模型训练技巧入门mmdetection(捌)—聊一聊FP16目标检测比赛中的tricks(已更新更多代码解析)1. FP16训练在mmdetection中,使用FP16非常方便,只需要在configs下的模型文件里添加一行即可。 _base_ = './faster_rcnn_r50_fpn_1x_coco.py'# loss_scale你可以自己指定,几百到1000比
Dual-stream multiple instance learning networks for tumor detection in Whole Slide Image——论文笔记 关于多示例学习的资料网上比较少,但是在医学图像方面还是有人在应用的。主要是因为一般比较大,几个G都是十分常见的,这么大图片是无法直接训练,一般都会进行切图,所以天然契合多示例学习bag和instance的概念。最近看了一篇论文刚好关于这方面的,所以做下笔记。github地址:https://github.com/binli123/dsmil-wsipaper:https://arxiv.org/abs/2011.08939背景知识在多示例学习(MIL)中,一组训练样本被视为包含多个instance的
在docker内启动juputer出现socket.error: [Errno 99] Cannot assign requested address错误 背景本人开发环境是docker容器里有可视化界面的Ubuntu18.0,因为项目需求需要用到jupyter notebook,然而在安装启动后,却出现了以下错误:socket.error: [Errno 99] Cannot assign requested address解决方法创建Jupyter notebook的配置文件jupyter_notebook_config.py,在终端中输入:jupyter notebook --generate-config或者版本不同,可以试下以下命
关于在jupyter notebook中解决 ipykernel_launcher.py: error 刚使用jupyter notebook的时候,把之前写的py脚本导了进去,一运行,发现了报了以下的错误:usage: ipykernel_launcher.py [-h] [--cfg CFG] [--device DEVICE] ipykernel_launcher.py: error: unrecognized arguments: -f /project/.local/share/jupyter/runtime/kernel-e24ff4da-c615-4d49-8e70-87a7bec2f9e7
Docker常用命令 1. 镜像常用命令docker images:列出docker下的所有镜像docker search XXXX:从dockerhub上搜索镜像的名字docker pull XXXX: 下载镜像(从换过的源),可以从dockerhub上搜索结果复制命令。注意: docker pull tomcat:latest 加版本号,默认latestdocker tag 当前镜像名:TAG 仓库地址/镜像名称:TAG: 镜像打tagdocker push仓库地址/镜像名称:TAG:镜像上传仓库docker
记使用Pytorch的hook机制提取特征时踩的一个坑 因为项目需求,需要用DenseNet模型提取图片特征,在使用Pytorch的hook机制提取特征,调试的时候发现提取出来的特征数值上全部大于等于0。很明显提取出来的特征是经过ReLU的。现在来看一下笔者是怎么定义hook的:...
Docker build出现“The command ‘/bin/sh -c apt-get install -y vim‘ returned a non-zzero code: 100”解决方法 最近在学习docker时,发现使用ubuntu构建镜像时,如果有apt-get install命令,老是出现以下错误:The command ‘/bin/sh -c apt-get install -y gedit’ returned a non-zzero code: 100查了一下,发现很多人都说是使用ubuntu原始的源在apt-get install下载新包时,可能因为网络问题导致出现此报错。尝试了一下换源,果然成功解决了问题,下面附上解决方法。解决方法# 原始命令RUN apt-get i
Attention UNet结构及pytorch实现 注意力机制可以说是深度学习研究领域上的一个热门领域,它在很多模型上都有着不错的表现,比如说BERT模型中的自注意力机制。本博客仅作为本人在看了一些Attention UNet相关文章后所作的笔记,希望能给各位带来一点思考,注意力机制是怎么被应用在医学图像分割的。参考文章:【语义分割系列:七】Attention Unet 论文阅读翻译笔记 医学图像 python实现医学图像分割-Attention Unet如果不知道什么是注意力机制,可以看看这篇博客:浅谈Attention-based Model【
Pytorch实现Grad-CAM 因为有一个分类模型始终得不到比较好的结果,所以查阅资料发现可以使用类激活图(CAM)的方式来看看模型究竟学到了什么,是不是重点关注我们希望的区域,所以特此记录一下学习过程。简介CAM全称是Class Activation Map,即类激活图。可以理解为模型某次预测中,对哪个区域的响应最大,可以说这个区域很大程度上决定了模型这次预测结果。以猫狗大战为例,如下面这张图一个任意的分类网络,输入一个既包含着一只狗,又包含着一只猫的猫狗合影图片,它会输出一个2维度的概率向量,分别对应着图片分类为猫和图片分类
加载pytorch预训练模型densenet121出现Missing key(s) in state_dict Unexpected key(s) in state_dict 在手动加载densenet121权重时,报了一下的错误: