# coding: utf-8
import numpy as np
import random
import math
import matplotlib.pyplot as plt
# ----------------------PSO参数设置---------------------------------
class PSO():
def __init__(self, pN, dim, max_iter): # 初始化类 设置粒子数量 位置信息维度 最大迭代次数
self.w = 0.8
self.c1 = 1.5
self.c2 = 1.5
self.pN = pN # 粒子数量
self.dim = dim # 搜索维度
self.max_iter = max_iter # 迭代次数
self.X = np.zeros((self.pN, self.dim)) # 所有粒子的位置(还要确定取值范围)
self.Xmax = 20
self.Xmin = -20
self.V = np.zeros((self.pN, self.dim)) # 所有粒子的速度(还要确定取值范围)
self.Vmax = 10
self.Vmin = -10
self.pbest = np.zeros((self.pN, self.dim)) # 个体经历的最佳位置
self.gbest = np.zeros((1, self.dim)) # 全局最佳位置
self.p_fit
粒子群算法代码.多维.python
最新推荐文章于 2023-02-13 14:31:26 发布
本文介绍了如何使用Python编程语言实现多维粒子群优化(PSO)算法,详细讲解了算法原理并提供了代码示例,帮助读者理解并应用该算法。
摘要由CSDN通过智能技术生成