如何设计一个预约抢购活动

本文探讨了互联网大数据存储中使用哈希算法与一致性哈希的优劣,重点介绍了在抢购场景下如何通过一致性hash解决单点热点问题和基于范围分片的库存管理。同时,文章还涉及分布式系统中的事务一致性、RPC调用的远程实现以及系统解耦和流量削峰的设计策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 总体架构设计
    在这里插入图片描述
  2. 互联网大量数据的存储设计

1)哈希算法,对商品ID进行分片
在这里插入图片描述
节点取模的形式,优点是均匀分布,缺点是扩展性不好。所以,我们可以采用一致性hash。
在这里插入图片描述
一致性HASH的优点:
在这里插入图片描述
解决单一热点问题,采用range(范围分片)
根据业务规则进行分片。可以根据三级品类进行分片。
在这里插入图片描述

  1. 抢购场景下的库存扣减设计
  2. 分布式系统之间事务一致性的架构设计
  3. RPC调用的远程实现方式
  4. 系统解耦,削峰流量设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值