运行环境:windows10 + Tensorflow 1.6.0 + Python 3.6.4(笔记本无GPU)
参考文章:https://blog.csdn.net/qq_32799915/article/details/80070711(图像语义分割 DeepLab v3+ 训练自己的数据集)
运行DeeplabV3+,数据集为VOC2012,整个过程参考上文,在运行eval.py时报错,报错的页面如下:Predictions out of bound,刚开始以为是dataset.ignore_label = 255,导致Predictions里出现255,而VOC总共类别数为21(包括背景),从而报错,然而修改ignore_label的值也仍然报错。
曾一度以为可能是版本问题,但仔细查看报错信息,否决了自己的这个想法。

最终不断尝试后发现:是Label数据存在问题。
DeeplabV3+的数据集应包括2个部分,images和labels,image为[n*m*3],jpg格式,label为[n*m*1],png格式。而VOC2012 SegmentationClass中的l

在Windows 10环境下,使用Tensorflow 1.6.0和Python 3.6.4进行图像语义分割时,运行DeeplabV3+的eval.py报错。经过排查,错误根源在于VOC2012数据集的SegmentationClass标签文件格式错误,原本为3通道RGB,需要转换为单通道'L'格式。转换后程序运行正常,得到MIOU值,但由于仅训练了30步,结果不佳。
最低0.47元/天 解锁文章

2091

被折叠的 条评论
为什么被折叠?



