【Tracking】单目标跟踪(粒子滤波及kalman滤波)

本文介绍了卡尔曼滤波和粒子滤波在单目标跟踪中的应用。卡尔曼滤波通过迭代计算未来状态,利用最优状态估计和误差修正,而粒子滤波则依赖于采样和重采样过程。实验表明,卡尔曼滤波在有限粒子数下表现优于粒子滤波,但随着粒子数增加,粒子滤波的跟踪效果逐渐提升。然而,选择合适的检测框形状和数量对跟踪效果至关重要。
摘要由CSDN通过智能技术生成

Kalman滤波

过程

卡尔曼滤波对模型的预测值和实际的观测值进行加权,迭代计算出未来的状态,具体过程如下:

  1. 使用上一次的最优状态估计和最优估计误差去计算这一次的先验状态估计和先验误差估计;
  2. 使用1得到的本次先验误差估计和测量噪声,得到卡尔曼增益;
  3. 使用1,2步骤得到所有先验误差估计和测量噪声,得到本次的最优估计。

其中的先验为根据以往的经验去推断,后验则为得到结果后再进行修正,卡尔曼增益作用为将“粗略估计”变为“最准确的估计”。卡尔曼滤波最需要解决的问题在于如何使得噪声的干扰最小。

核心思想

卡尔曼滤波实质上是参数化的贝叶斯模型,根据当前的测量值和上一刻的预测值与误差,计算得到当前的最优量,再预测下一刻的量。且其输入变量都是输入变量的线性组合,卡尔曼滤波器可以从最小均方差的角度推断出,也可以从贝叶斯推断的角度来推导。

参数说明

  1. 当测量噪声的协方差过大时,也就是襒和襑中的值过大时,会使得目标踪的效果变差,由于噪声的干扰,会使得其中的跟踪难度加大,从而使得跟产生偏移。
  2. 当状态转移矩阵襁过大时,会出现难以收敛的情况,也就是目标跟踪完全失效,无法得到目标的位置,而这是因此计算下一次目标的位置时,即预测下一个目标的位置时,会通过与状态转移矩阵计算得到,因此状态转移矩阵襁不宜过大,应该取一个合适大小的值。
  3. 同样观测矩阵襈初始值也不能过大,会出现刚开始时跟踪,但是到后面跟踪框会飘移到其他地方
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值